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Introduction

1/11 [3] A. Hasegawa & K. Mima, Phys. Fluids 21, 1, pp. 87-92 (1977).

• A closed equation for the electric potential describing electrostatic plasma turbulence in a general 
(inhomogeneous and curved) magnetic field is not available at present. 

• The purpose of this study is to generalize (1) to an arbitrary magnetic field 𝑩 = 𝑩 𝒙 ≠ 𝟎.

The Hasegawa-Mima (HM) equation [3] describes 2-dimensional electrostatic plasma turbulence in a straight 
homogeneous magnetic field 𝑩 = 𝐵0∇z. Defining 𝑓, 𝑔 = 𝑓𝑥𝑔𝑦 − 𝑓𝑦𝑔𝑥, ∇ 𝑥,𝑦 = ∇𝑥 𝜕𝑥 + ∇𝑦 𝜕𝑦 and Δ 𝑥,𝑦 = 𝜕𝑥

2 +

𝜕𝑦
2 , the equation is

𝜕

𝜕𝑡
𝜆𝜑 −

𝜎

𝐵0
2 Δ 𝑥,𝑦 𝜑 =

𝜎

𝐵0
3 𝜑, Δ 𝑥,𝑦 𝜑 +

𝛽

𝐵0
𝜑𝑦 , 𝜆 =

𝑒

𝑘𝐵𝑇𝑒
, 𝜎 =

𝑚

𝑍𝑒
. 1

In a domain Σ ⊂ ℝ2, the invariants of the HM equation are mass 𝑀, energy 𝐻, and generalized enstrophy 𝑊:

𝑀Σ = න
Σ

𝜑 𝑑𝑥𝑑𝑦 , 𝐻Σ =
1

2
න
Σ

𝜆𝜑2 + 𝜎 ∇ 𝑥,𝑦 𝜑
2

𝑑𝑥𝑑𝑦 ,

𝑊Σ =
1

2
න
Σ

𝜆 ∇ 𝑥,𝑦 𝜑
2
+

𝜎

𝐵0
2 Δ 𝑥,𝑦 𝜑

2
𝑑𝑥𝑑𝑦 .

2



Two-fluid Hasegawa-Mima Ordering
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Order Dimensionless Fields Distances Rates Velocities

1 𝑩, 𝐴𝑒 𝐿 𝜔𝑐

𝜖 𝜆𝜑, 𝜔𝑐
−1𝜕𝑡, 𝐿∇ log𝐵 , 𝐿∇ log𝐴𝑒 𝑬⊥ 𝜏𝑑

−1, 𝒗𝑬/𝐿 𝒗𝑬

𝜖2 𝜏𝑑/𝜏𝑏 𝒗pol/𝐿 𝒗pol

𝜖3 𝐸∥, 𝑃 𝜏𝑏
−1, 𝑣∥/𝐿 𝑣∥

• Slow parallel dynamics, thermalized electrons, and cold ions

• Small magnetic field and electron density gradients 𝐿∇ log𝐵 ∼ 𝐿∇ log𝐴𝑒 ≪ 1 over the maximum 

turbulence scale 𝐿 ∼ 𝑘⊥min
−1

Experimental observations in dipole magnetic fields [4,5] 

➢ Existence of drift wave turbulence and zonal flows in systems where both electron spatial density and 
magnetic field have strong gradients over spatial scales comparable to that of electric field and density 
fluctuations (entropy modes [6])

[4] A. C. Boxer et al. Nat. Phys. 6, pp. 207-212 (2010) [5] N. Kenmochi et al. Nuc. Fusion 62 026041 (2022) [6] D. T. Garnier et al. PoP 24 012506 (2017).



Literature
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(i) Sugama & Horton PoP 1998
Gyrokinetic ordering
Slab + Cylindrical 
Strong background flow 𝑽0

(ii) Brizard Phys. Fluids 1992
Gyrokinetic ordering
Small magnetic field and density gradients

(iii) Frieman & Chen Phys. Fluids 1982
Gyrokinetic ordering
Symmetric magnetic field
Fourier form  

Our aim: derive generalized HM eq. with

A. Two-fluid ordering (no need for 𝜌)
B. No conditions on geometry of 𝑩 or 𝐴𝑒



Generalized Hasegawa-Mima (GHM) Equation
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We propose [1,7] a generalization of the HM equation which accounts for drift wave turbulence in systems with 
strong magnetic field and electron density gradients 𝐿∇ log𝐵 ∼ 𝐿∇ log𝐴𝑒 ∼ 1:

𝜕

𝜕𝑡
𝜆𝐴𝑒𝜒 − 𝜎∇ ⋅

𝐴𝑒∇⊥𝜒

𝐵2
= ∇ ⋅ 𝐴𝑒 𝜎

𝑩 ⋅ ∇ × 𝒗𝑬
𝜒

𝐵2
− 1 𝒗𝑬

𝜒
. 3

The ordering leading to (3) does not involve conditions on spatial derivatives of 𝑩 or 𝐴𝑒:

➢ The GHM equation (3) can sustain turbulence over spatial scales comparable to those of magnetic field and 
electron spatial density, as well as over distances of the order of the ion gyroradius and smaller.  

[1] N. Sato and M. Yamada J. Plasma Phys. 88 3 (2022) [7] N. Sato and M. Yamada arXiv:2306.16660 (2023).

• 𝒙 ∈ Ω ⊆ ℝ3, 𝑡 ∈ [0,∞)

• 𝜒 𝒙, 𝑡 = 𝜑 𝒙, 𝑡 +
𝜎

2
𝒗𝑬
2 𝒙, 𝑡 (charged particle energy)

• 𝑩 = 𝑩 𝒙 ≠ 𝟎 (static magnetic field of arbitrary geometry)
• 𝐴𝑒 = 𝐴𝑒 𝒙 (leading order electron spatial density, 𝑛𝑒 = 𝐴𝑒exp 𝑒𝜑/𝑘𝐵𝑇𝑒 )
• ∇⊥= −𝐵−2𝑩 × 𝑩 × ∇

• 𝒗𝑬
𝜒
= 𝑩 × ∇𝜒/𝐵2

• 𝒗𝑬 = 𝑩 × ∇𝜑/𝐵2

HM eq. when
𝑩 = 𝐵0∇𝑧,

log𝐴𝑒 = log𝐴𝑒0 + 𝛽𝑥,
𝛽𝐿 ∼ 𝜖



Two Fluid Generalized Hasegawa-Mima Ordering
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Order Dimensionless Fields Distances Rates Velocities

1 𝑩, 𝐴𝑒 𝐿 𝜔𝑐

𝜖 𝜆𝜑, 𝜔𝑐
−1𝜕𝑡 𝑬⊥ 𝜏𝑑

−1, 𝒗𝑬/𝐿 𝒗𝑬

𝜖2 𝜏𝑑/𝜏𝑏 𝒗pol/𝐿 𝒗pol

𝜖3 𝐸∥, 𝑃 𝜏𝑏
−1, 𝑣∥/𝐿 𝑣∥

• The GHM equation (3) can be obtained from a two fluid plasma model with cold ions and hot thermalized 
electrons with the aid of the ordering above [1,7].

• No ordering conditions apply to spatial derivatives of 𝑩 or 𝐴𝑒.

• In particular, the GHM equation (3) is compatible with the  following configurations  

𝑘⊥ ∼ 𝜌𝑖
−1, 𝑘⊥ ∼ ∇ log𝐵 ∼ ∇ log𝐴𝑒

[1] N. Sato and M. Yamada J. Plasma Phys. 88 3 (2022) [7] N. Sato and M. Yamada arXiv:2306.16660 (2023).

No limit to the 
magnitude of 𝑘⊥

𝑘⊥, ∇ log𝐵, and ∇ log𝐴𝑒 can be comparable
(not possible with standard HM equation)



Guiding Center Generalized Hasegawa-Mima Ordering
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Order Dimensionless Fields Distances Rates Velocities

𝜖−1 𝑩, 𝑬⊥ 𝜔𝑐

1 𝐴𝑒 𝐿 𝜏𝑑
−1, 𝒗𝑬/𝐿 𝒗𝑬

𝜖 𝜆𝜑, 𝜌𝑖/𝐿, 𝜔𝑐𝜏𝑑
−1, 𝑘𝐵𝑇𝑐/

𝑚

2
𝒗𝑬
2 𝜌𝑖 𝒗pol/𝐿 𝒗pol

𝜖2 𝑚

2
𝒗𝑬
2/𝑘𝐵𝑇𝑒 , 𝜏𝑑/𝜏𝑏

𝐸∥′ 𝒗∇/𝐿, 𝑢/𝐿, 𝜏𝑏
−1 𝑢

𝜖5 𝒗𝜅/𝐿 𝒗𝜅

[7] N. Sato and M. Yamada arXiv:2306.16660 (2023).

Order Dimensionless Fields Distances Rates Velocities

𝜖−1 𝑩, 𝑬⊥ 𝜔𝑐

1 𝑬∥ 𝐿 𝒗/𝐿, 𝒗𝑬/𝐿, 𝜏
−1 𝒗, 𝒗𝑬

𝜖 𝜌𝑖/𝐿, 𝜔𝑐𝜏𝑑
−1 𝜌𝑖 𝒗∇/𝐿, 𝒗𝜅/𝐿, 𝒗pol/𝐿 𝒗∇, 𝒗𝜅, 𝒗pol

Guiding center ordering required for the existence of the first adiabatic invariant 𝜇.

Drift wave turbulence ordering for the derivation of the GHM eq. (3) in guiding-center theory [6].



Invariants of the GHM Equation
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Invariant Expression Field Conditions Boundary Conditions

Mass 𝑀Ω න
Ω

𝐴𝑒 1 + 𝜆𝜒 𝑑𝒙 None 𝐴𝑒𝑽𝑑𝑤 ⋅ 𝒏 = 0

Energy 𝐻Ω
1

2
න
Ω

𝐴𝑒 𝜆𝜒2 + 𝜎
∇⊥𝜒

2

𝐵2
𝑑𝒙 None 𝐴𝑒𝜒𝑽𝑑𝑤 ⋅ 𝒏 = 0

Enstrophy 𝑊Ω න
Ω

𝐴𝑒𝑤 𝑑𝒙 ∇ × 𝐴𝑒
𝑩

𝐵2
= 𝟎 𝑤𝐴𝑒𝒗𝑬

𝜒
⋅ 𝒏 = 0

• 𝜒 𝒙, 𝑡 = 𝜑 𝒙, 𝑡 +
𝜎

2
𝒗𝑬
2 𝒙, 𝑡 (charged particle energy)

• 𝑤 = 𝑤 𝜆𝜒 − 𝜎𝜔/𝐴𝑒 (arbitrary function of argument)
• 𝜔 = ∇ ⋅ 𝐴𝑒𝐵

−2∇⊥𝜒 (vorticity)

• 𝑽𝑑𝑤 = 1 − 𝜎
𝑩⋅∇×𝒗𝑬

𝜒

𝐵2
𝒗𝑬
𝜒
− 𝜎

∇⊥𝜒𝑡

𝐵2
(effective drift velocity)

• 𝒗𝑬
𝜒
= 𝑩 × ∇𝜒/𝐵2

[7] N. Sato and M. Yamada arXiv:2306.16660 (2023).



Zonal Flows and Drift Waves in Dipole Magnetic Fields
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➢ In an axially symmetric dipole magnetic field 𝑩 = ∇𝜁 𝑟, 𝑧 = ∇Ψ 𝑟, 𝑧 × ∇𝜙 the GHM eq. (3) reduces to

𝜕

𝜕𝑡
𝜆𝐴𝑒𝜒 − 𝜎∇ ⋅ 𝐴𝑒

∇⊥𝜒

𝐵2
= 𝐵2 𝜒,

𝐴𝑒
𝐵2

𝜎
Δ⊥𝜒

𝐵2
− 1

Ψ,𝜙

, 𝑓, 𝑔 Ψ,𝜙 = 𝑓Ψ𝑔𝜙 − 𝑓𝜙𝑔Ψ. 4

Steady solutions 𝜒0 of (4) satisfy

𝐴𝑒
𝐵2

𝜎
Δ⊥𝜒0
𝐵2

− 1 = 𝑓 𝜒0, 𝜁 . 5

Under suitable boundary conditions, eq. (5) admits zonal flow solutions 𝜒0𝜙 = 0 such that 𝒗𝑬
𝜒
= 𝜒0Ψ 𝑟, 𝑧 𝜕𝜙.

➢ Given 𝜔 ∈ ℝ, ℓ ∈ ℤ drift waves 𝜒𝑑 = 𝜉 𝜁,Ψ exp −i ℓ𝜙 + 𝜔𝑡 exist with 𝜉 solution of

𝜔 =
ℓ
𝜕
𝜕Ψ

log
𝐴𝑒
𝐵2

𝜎ℓ2

𝑟2𝐵2
+ 𝜆 −

𝜎
𝐴𝑒𝜉

∇ ⋅ 𝐴𝑒
∇⊥𝜉
𝐵2

HM Limit
𝜔 = −

𝑘𝑦𝛽

𝜆𝐵0 + 𝜎
𝑘𝑥
2 + 𝑘𝑦

2

𝐵0

. 6

[8] N. Sato and M. Yamada arXiv:2305.16668 (2023).



Hamiltonian Structure of the GHM Equation
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The GHM eq. (3) is endowed with an antisymmetric bracket structure:

𝜕𝜂

𝜕𝑡
= 𝜂,𝐻Ω , 𝐹, 𝐺 = න

Ω

𝐴𝑒 1 − 𝜎
𝑩 ⋅ ∇ × 𝒗𝐸

𝜒

𝐵2
∇𝐹𝜂 ⋅

𝑩

𝐵2
× 𝛻𝐺𝜂 𝑑𝒙 , 𝜂 = 𝜆𝐴e𝜒 − 𝜎𝜔. 7

The GHM eq. (3) is endowed with a Poisson bracket provided that the magnetic field satisfies the integrability 
condition ∇ × 𝐴𝑒𝑩/𝐵

2 = 𝟎. The Poisson bracket is:

𝐹, 𝐺 PB = න
Ω

𝐴𝑒∇𝐹𝜂 ⋅
𝑩

𝐵2
× 𝛻𝐺𝜂 𝑑𝒙 . 8

• The integrability condition also guarantees the conservation of enstrophy 𝑊Ω, which is a Casimir of 𝐹, 𝐺 PB.

• Analogy with ExB dynamics: ሶ𝒙 = 𝑬 × 𝑩/𝐵2 Hamiltonian iff 𝑩 ⋅ ∇ × 𝑩 = 0.

• The Poisson bracket (8) reduces to the HM and 2D ideal fluid Poisson brackets.

[8] N. Sato and M. Yamada arXiv:2305.16668 (2023).



Nonlinear Stability of Steady Solutions of the GHM Equation
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[8] N. Sato and M. Yamada arXiv:2305.16668 (2023). [9] V. I. Arnold and B. A. Khesin, in Topological methods in hydrodynamics, Springer, pp. 89-96 
(1998).

Theorem 1. (Nonlinear stability of steady solutions of the GHM equation) Let 𝜒0 𝒙 ∈ 𝐶2 Ω denote a critical 
point of the energy-Casimir function ℌΩ = 𝐻Ω + 𝛾𝑀Ω + 𝜈𝑊Ω. If the condition ∇ × 𝐴𝑒 𝑩/𝐵

2 = 𝟎 holds, assume 
that the function 𝑤 𝜂/𝐴𝑒 appearing within the integrand of the Casimir invariant 𝑊Ω is twice differentiable in its 
argument, and that it satisfies

0 < 𝑐𝑚 ≤ 𝜈𝑤′′ = 𝜈
𝑑2𝑤

𝑑 𝜂/𝐴𝑒
2 ≤ 𝑐𝑀 < ∞,

with 𝑐𝑚 and 𝑐𝑀 real constants. If ∇ × 𝐴𝑒 𝑩/𝐵
2 ≠ 𝟎 set 𝜈 = 0. Further assume that 𝑩, 𝐴𝑒 ∈ 𝐶2 ഥΩ , that their 

minima satisfy 𝐵𝑚, 𝐴𝑒𝑚 > 0, and that the GHM eq. (3) admits a solution 𝜒 𝒙, 𝑡 ∈ 𝐶2 Ω × 0, 𝑡 for all 𝑡 ≥ 0 such 

that 𝛿𝜒 = 𝜒 − 𝜒0 and 𝐴𝑒 = 0 on the boundary 𝜕Ω. Then, the critical point 𝜒0 is nonlinearly stable: there exists a 
positive real constant 𝒞 such that

𝜒 𝑡 − 𝜒0 ⊥
2 ≤ 𝒞 𝜒 0 − 𝜒0 ⊥

2 ∀𝑡 ≥ 0,
with

𝜒 ⊥
2 = ቐ

𝜒 𝐿2 Ω
2 + ∇𝜒 𝐿2 Ω

2 + 𝜂 𝐿2 Ω
2 if ∇ × 𝐴𝑒 𝑩/𝐵

2 = 𝟎,

𝜒 𝐿2 Ω
2 + ∇𝜒 𝐿2 Ω

2 if ∇ × 𝐴𝑒 𝑩/𝐵
2 ≠ 𝟎,

where 𝐿2 Ω denotes the standard  𝐿2 norm in Ω and we used the abbreviated notation 𝜒 𝑡 = 𝜒 𝒙, 𝑡 .

Remark 1. Theorem 1 generalizes Arnold’s result [9] concerning the stability of a 2D ideal fluid, which 
corresponds to 𝑩 = ∇𝑧, 𝐴𝑒 = 𝜎 = 1, and 𝜆 = 0.



Concluding Remarks – Summary 
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• We have derived a model GHM equation (3) describing electrostatic plasma turbulence in a 
general magnetic field from both two-fluid and guiding center theories.

• The ordering leading to (3) does not involve conditions on spatial derivatives of 𝑩 or 𝐴𝑒: the 
GHM equation can sustain turbulence over spatial scales comparable to those of magnetic 
field and electron spatial density, as well as over distances of the order of the ion gyroradius. 

• The GHM equation reduces to the HM equation in the limit of a straight magnetic field.

• The GHM equation exhibits both zonal flows and drift waves in dipole geometry.

• The equation preserves mass 𝑀Ω and energy 𝐻Ω. Enstrophy 𝑊Ω appears as a Casimir invariant 
of a Poisson bracket when ∇ × 𝐴𝑒𝑩/𝐵

2 = 𝟎.

• We have obtained a nonlinear stability criterion for steady solutions that generalzes Arnold’s 
classical result.
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Introduction
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• Given a set of nested toroidal surfaces Ψ in Ω, can one always find a 
solenoidal vector field 𝒘 such that both 𝒘 and ∇ × 𝒘 are tangent to the 
level sets of Ψ?

• More generally, both Ψ and Ω can be considered as variables of the
problem.

This study is concerned with the equation

∇ × 𝒘 × 𝒘 × ∇Ψ = 𝟎, ∇ ⋅ 𝒘 = 0 in Ω. 1

Here, the unknown 𝒘 (𝒙) is a three-dimensional vector field with Cartesian components 𝑤𝑖, 𝑖 = 1,2,3, defined in 
a smooth toroidal domain Ω ⊂ ℝ3 foliated by nested toroidal surfaces corresponding to level sets of a function 
Ψ(𝒙) such that the bounding surface is given by 𝜕Ω = 𝒙 ∈ ℝ3: Ψ = Ψ0 ∈ ℝ .

Ω

∇Ψ

𝒘

𝛁 ×𝒘



Relation with Fluid Mechanics and Magnetohydrodynamics (MHD)
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In the context of fluid mechanics, (1) represents a generalization of a more difficult equation

∇ × 𝒘 × 𝒘 = ∇Ψ, ∇ ⋅ 𝒘 = 0 in Ω, 2

where 𝒘 = 𝒖 is the fluid velocity of an incompressible steady Euler flow, ∇ × 𝒘 = 𝝎 the vorticity, and 𝑃 = −Ψ −
1

2
𝒖2 the fluid pressure [1]. 

Equation (2) also corresponds to the MHD equilibrium equation with 𝒘 = 𝑩 the magnetic field, ∇ × 𝒘 = 𝑱 the 
electric current, and 𝑃 = Ψ the pressure field. Its solution in a toroidal domain is crucial for the design of 
confining magnetic fields in nuclear fusion reactors [2].

• Any solution of (2) is also a solution of (1).

• Physically, (1) can be related to flows with anisotropic pressure or anisotropic MHD equilibria, i.e., ∇Ψ → ∇ ⋅ Π.

[1] H. K. Moffatt, J. Fluid Mech. 159, pp. 359-378 (1985). [2] M. D. Kruskal and R. M. Kulsrud, The Physics of Fluids 1, 4 (1958). 



Magnetic Confinement Fusion
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Nuclear fusion is the nuclear reaction powering stars. It represents an attractive carbon-free source of energy: 
hydrogen contained in 1 litter of water is enough to provide energy to a standard household for 1 year.

In a fusion reaction, part of the mass of the fusing nuclei is converted into kinetic energy of reaction products. 
In a fusion reactor, due to high temperatures (~108 K) the fuel (plasma) is confined via a magnetic field within 
a toroidal vessel.

T（Tritium）

D（Deuterium） 4He（Helium）
+3.5 MeV

n（Neutron）
+14.1 MeV

Proton

Neutron
Fuel (Plasma)

Energy release by 
nuclear fusion

Reactor 
Vessel Magnetic Field
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Tokamaks & Stellarators

Asymmetry
(Stellarator)

Plasma current 
is prone to 
instability

Field Line Twist MechanismReactor Shape

Axial
Symmetry
(Tokamak)

Properties

Confinement is 
degraded by loss of 
conserved angular 
momentum

In both cases, 
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Background on Equation (2): An Unsolved PDE Problem

5/40 [3] C. Lo Surdo, Int. J. Math. Math. Sci. 9, pp. 123-130 (1986). [4] Z. Yoshida and H. Yamada, Prog. Theor. Phys. 84 2 (1990).

• Equation (2) has a mixed behavior (twice elliptic and twice hyperbolic), with the nontrivial characteristic 
surfaces 𝒘 ⋅ ∇𝑆 2 = 0 associated with hyperbolicity depending on the unknown 𝒘. 

• These features make (2) one of the hardest PDEs in mathematical physics.

• Despite its difficulty, steady progress has been made in the understanding of equation (2) since the inception 
of the problem in the early years of magnetic confinement fusion research.

A general theory concerning the existence of solutions of (2) is not available [3]:  it is not known whether regular 
steady fluid flows or equilibrium magnetic fields exist in a bounded domain Ω of arbitrary shape. 

∇𝑆 2 𝒘 ⋅ ∇𝑆 2 = 0. 3

The intrinsic mathematical difficulty behind equation (2) can be understood in terms of characteristic surfaces. If 
considered as a system of nonlinear first order PDEs for the unknowns 𝒘, Ψ, the characteristic surfaces 𝑆 of 
equation (2) are determined by the characteristic equation [4]



Background on Equation (2): Weak Solutions 
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[5] A. Enciso, A. Luque, and D. Peralta-Salas, arXiv:2104.08149v3 (2022). [6] O. P. Bruno and P. Laurence, Commun. Pure Appl. Math. 49, pp. 717-764 
(1996). [7] Z. Yoshida and Y. Giga, Math. Z. 204, pp. 235-245 (1990). [8] P. Constantin and F. Pasqualotto, arXiv:2208.11109v1 (2022).

Given a nondegenerate toroidal domain Ω1 ⊂ ℝ3, one can construct 
a piecewise smooth solution 𝒘,Ψ of (2) with constant pressure 
Ψ = Ψ𝑖 in each subdomain Ω𝑖, 𝑖 = 1,… , 𝑁, with ഥΩ𝑖−1 ⊂ Ω𝑖 ⊂ ഥΩ, 2 ≤
𝑖 ≤ 𝑁, nested toroidal domains [5].  See also [6].  

In each Ω𝑖 eq. (2) reduces to the eigenvalue problem for the curl 
operator [7]. The eigenvectors 𝒘 such that ∇ × 𝒘 = 𝜆𝑖𝒘 are called 
Beltrami fields.

න
Ω

𝒘 ⋅ 𝒘 ⋅ ∇ 𝒗 − Ψ +
1

2
𝒘2 ∇ ⋅ 𝒘 𝑑𝑉 = 0, න

Ω

𝒘 ⋅ ∇𝜑 𝑑𝑉 = 0 , ∀𝒗 ∈ 𝐶𝑐
1 Ω , 𝜑 ∈ 𝐶1 Ω . 4

The solutions are weak, in the sense that 𝒘,Ψ ∈ 𝐿2 Ω with  

Ω2

Ω1

Ω𝑁
Ω𝑁−1

Ψ = Ψ𝑁

∇ × 𝒘 = 𝜆𝑁𝒘

Ψ = Ψ1
∇ × 𝒘 = 𝜆1𝒘

Ω

In a slightly different setting where Ψ is not required to be constant on 𝜕Ω, nontrivial strong solutions of (2) in 
the class 𝐻1(Ω) have been reported in [8]. These solutions are obtained as steady states of a Voigt 
approximation scheme of the time-dependent viscous non-resistive incompressible magnetohydrodynamics 
equations in the limit 𝑡 → ∞.



Background on Equation (2): Continuous Euclidean Isometries and the Grad-Shafranov Equation

7/40 [9] J. W. Edenstrasser, J. Plasma Phys. 24, pp. 299-313 (1980). [10] J. W. Edenstrasser, J. Plasma Phys. 24, pp. 515-518 (1980).

Eq. (2) is greatly simplified when 𝒘 and Ψ are invariant under a continuous Euclidean isometry, i.e., a continuous 
transformation of ℝ3 that preserves the Euclidean distance 𝑑𝒙2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 between points: 

ℒ𝜼 𝑑𝒙
2 = 0 ↔ 𝜼 = 𝒂 + 𝒃 × 𝒙, 𝒂, 𝒃 ∈ ℝ3. 5

ℒ𝒂 + 𝒃 × 𝒙𝒘 = 𝟎, ℒ𝒂 + 𝒃 × 𝒙Ψ = 0. 6

In plasma physics, invariance under a continuous Euclidean isometry is referred to as a symmetry of the system. 
In formulae, 𝒘 and Ψ are symmetric whenever constant vectors 𝒂, 𝒃 ∈ ℝ3 with 𝒂2 + 𝒃2 ≠ 0 exist such that

When (6) holds, eq. (2) reduces to the Grad-Shafranov equation [9, 10], a nonlinear 2nd order elliptic PDE for the 
unknown Θ, with Ψ = Ψ Θ . Regular (symmetric) solutions of the Grad-Shafranov equation can be obtained by 
elliptic theory. Taking coordinates 𝒚 and setting 𝒘 = ∇Θ × ∇𝑦3 + 𝑤3𝜕3 with 𝜕3 = 𝒂 + 𝒃 × 𝒙, the equation is:

ΔΘ − ∇Θ ⋅ ∇ log𝑔33 − 𝑔33
𝑑Ψ

𝑑Θ
+ 𝑤3

𝑑𝑤3

𝑑Θ
= 0 in Ω, Θ = Θ0 on 𝜕Ω. 7



Background on Equation (2): Arnold’s Structure Theorem
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[11] P. Helander, Rep. Prog. Phys. 77, 087001 (2014). [12] E. Rodriguez, P. Helander, and A. Bhattacharjee, Phys. Plasmas 27, 062501 (2020). [13] H. Grad, 
The Physics of Fluids 10, 1 (1967). [14] V. I. Arnold, J. Appl. Math. Mech. 30, pp. 223-226 (1966). [15] M. Eisenmberg and R. Guy, Am. Math. Mon. 86, pp. 
571-574 (1979). 

Stellarators sacrifice axial symmetry in favor of field line twist aimed at minimizing plasma losses at the vessel 
boundary 𝜕Ω caused by cross-field dynamics of charged particles [11]. 

Note that even if asymmetric solutions of (2) exist, they will not necessarily work as confining magnetic fields, 
because other requirements, such as quasisymmetry [12] and a small electric current, must be enforced on 𝒘.

According to the Grad conjecture [13], only “configurations of great geometrical symmetry” result in  well 
behaved equilibria. This is understood as eq. (4) being necessary for the existence of regular solutions of (2). 

Arnold’s structure theorem [14] characterizes the topology of any 
analytic solution of (2) such that 𝒘 and ∇ × 𝒘 are not everywhere 
collinear: when  (2) is considered in a connected analytic bounded 
domain Ω together with tangential boundary conditions 𝒘 · 𝒏 = 0
on 𝜕Ω, where 𝒏 is the unit outward normal to 𝜕Ω, any contour of Ψ
that does not intersect the boundary 𝜕Ω and such that ∇Ψ ≠ 𝟎 is a 
two-dimensional torus. 

Note: level sets of Ψ cannot be spherical due to the hairy ball 
theorem [15], which precludes the existence of a continuous non-
vanishing vector field always tangent to a 2-sphere.



Equation (1) and Anisotropic Pressure
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In (2), the scalar Ψ can be generalized with a tensor Π. One obtains anisotropic MHD equilibria:

∇ × 𝒘 × 𝒘 = ∇ ⋅ Π, ∇ ⋅ 𝒘 = 0 in Ω, Π𝑖𝑗 = 𝑃 −
1

2
𝛾𝒘2 𝛿𝑖𝑗 + 𝛾𝑤𝑖𝑤𝑗 . 8

Equation (8) can be written as:

1 − 𝛾 ∇ × 𝒘 × 𝒘 = ∇𝑃 −
1

2
𝒘2∇𝛾 + 𝒘 ⋅ ∇𝛾 𝒘, ∇ ⋅ 𝒘 = 𝟎 in Ω. 9

Assume 𝒘 = ∇Ψ × ∇Θ, 𝒘 ⋅ ∇∼ 0, 𝑃Θ = 𝒘2𝛾Θ/2, and 𝜆 = 𝑃Ψ −𝒘2𝛾Ψ/2. Equation (9) becomes:

∇ × 𝒘 ×𝒘 = 𝜆∇Ψ, ∇ ⋅ 𝒘 = 𝟎 in Ω, 10

which corresponds to equation (1).



Equation (1) as a PDE Problem   

10/40 [16] Z. Yoshida, J. Math. Phys. 50, 113101 (2009). [17] Z. Yoshida and P. J. Morrison, Phys. Rev. Lett. 119, 244501 (2017).

• Considering the challenge posed by equation (2), here we examine the simplified problem of equation (1). 

• While in (2) the magnitude of (∇ × 𝒘) × 𝒘 along ∇Ψ is exactly |∇Ψ|, no such requirement appears in (1). 

• Eq. (2) simplifies the mathematical difficulty by a ‘half’, since the governing equations are reduced from 2 to 1. 

• Any conditions preventing the existence of solutions of (1) would also apply to (2). 

• If regular solutions of (1) could be obtained, it would be possible to identify the geometrical obstruction 
preventing such solutions from solving (2) as well.

• Strategy: reduce (1) by a Clebsch representation [16, 17] of 𝒘 by a pair of Clebsch potentials (Ψ, Θ) that reflect 
the foliated (∇Ψ · 𝒘 = 0) and solenoidal (∇ · 𝒘 = 0) nature of the candidate solution 𝒘 = ∇Ψ × ∇Θ. 

• Merit: the topology of the foliation associated with the (given) function Ψ can be enforced a priori, leaving 
the analysis of the existence of solutions as an independent issue for Θ.



Main Result

11/40 N. Sato and M. Yamada 2023 J. Math. Phys. 64, 081505 

Strategy of proof: the Clebsch representation 𝒘 = ∇Ψ × ∇Θ reduces equation (1) to a single linear elliptic 2nd

order PDE on each toroidal surface Ψ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 for the unknown Θ in a periodic domain. Regular periodic 
solutions can be obtained by elliptic theory. A global solution Θ can then be constructed by smoothly joining 
solutions corresponding to different toroidal surfaces, thus providing a smooth solution 𝒘 of (1) in a hollow 
toroidal volume Ω.

Theorem 1. Let Ω ⊂ ℝ3 denote a bounded domain. Assume that the bounding surface 𝜕Ω is a hollow torus 
corresponding to two distinct level sets of a smooth function Ψ ∈ 𝐶∞ Ω , with ∇Ψ ≠ 𝟎 in Ω, and that the level sets 
of Ψ foliate Ω with nested toroidal surfaces endowed with angle coordinates 𝜇, 𝜈 with smooth gradients ∇𝜇, ∇𝜈 ∈
𝐶∞ Ω . Then, the system of partial differential equations

∇ × 𝒘 × 𝒘 × ∇Ψ = 𝟎, ∇ ⋅ 𝒘 = 0 in Ω,

admits a nontrivial solution 𝒘 ∈ 𝐶∞ Ω  such that 𝒘 and 𝛻 × 𝒘 are not everywhere collinear.

＊Examples of smooth solutions foliated by toroidal surfaces that are not invariant under Euclidean isometries 
are constructed explicitly, and they are identified as anisotropic MHD equilibria. 



A Remark on Equation (1)
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The main difficulty in (1) stems from ∇ ⋅ 𝒘 = 0. Indeed, if this requirement is dropped, explicit solutions of 
∇ × 𝒘 ×𝒘 × ∇Ψ = 𝟎 can be obtained easily: the vector field 

𝜆 = −
1

2

𝜕𝑓2

𝜕Ψ
∇𝛼 2 −

1

2

𝜕𝑔2

𝜕Ψ
∇𝛽 2 −

𝜕 𝑓𝑔

𝜕Ψ
∇𝛼 ⋅ ∇𝛽. 12

is a nontrivial solution of ∇ × 𝒘 × 𝒘 = 𝜆∇Ψ with

𝒘 = 𝑓 Ψ, 𝛼 ∇𝛼 + 𝑔 Ψ, 𝛽 ∇𝛽, ∇Ψ ⋅ ∇𝛼 = ∇Ψ ⋅ ∇𝛽 = 0, 11

Example: consider a family of toroidal surfaces corresponding to level sets of a function Ψ𝜖 defined by 

Ψ𝜖 = Ψ0 +
1

2
𝜖 sin 𝑚𝜑 , Ψ0 =

1

2
𝑟 − 𝑟0

2 + 𝑧2 , 𝑚 ∈ ℤ, 𝑚 ≠ 0, 𝜖, 𝑟0 > 0 . 13

Here, 𝑟, 𝜑, 𝑧 denote cylindrical coordinates. It can be shown [arXiv:2211.10757] that ℒ𝒂+𝒃×𝒙Ψ𝜖 = 0 ↔ 𝒂 = 𝒃 =
𝟎. Hence, the toroidal surfaces Ψ𝜖  are not invariant under continuous Euclidean isometries. 



A Remark on Equation (1)
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Let Ω ⊂ ℝ3 denote the volume enclosed by a contour of Ψ𝜖 and consider the vector field

14

15

𝒘 = 𝑓 Ψ𝜖 ∇𝛼, 𝛼 = arctan
𝑧

𝑟 − 𝑟0
.

It follows that

∇ × 𝒘 × 𝒘 = −
1

2 2Ψ𝜖 − 𝜖 sin 𝑚𝜑

𝜕𝑓2

𝜕Ψ𝜖
∇Ψ𝜖 ,

∇ ⋅ 𝒘 = −
𝑧𝑓 Ψ𝜖

𝑟 2Ψ𝜖 − 𝜖 sin 𝑚𝜑
.

The vector field 𝒘 of (14) is shown with ∇ × 𝒘 on the 
contour Ψ𝜖 = 0.1 in the figure on the right. 

In the figure, 𝑓 = Ψ𝜖, 𝑟0 = 1, 𝜖 = 0.1, and 𝑚 = 4.  

14

15



Reduction of Equation (1) Via Clebsch Potentials
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[18] V. I. Arnold, in Mathematical Methods of Classical Mechanics, 2nd ed., Springer, New York, pp. 230-232 (1989). [19] M. de Le ́on, in Methods of 
Differential Geometry in Analytical Mechanics, Elsevier, New York, pp. 250-253 (1989). 

For the time being, all quantities can be differentiated as many times as needed. Any solution of (1) with 
∇ × 𝒘 × 𝒘 ≠ 𝟎 satisfies 𝒘 = ∇Ψ × 𝒒. Hence ∇ ⋅ 𝒘 = −∇Ψ ⋅ ∇ × 𝒒 = 0. In a small enough neighborhood, 𝒒 =
∇𝜗 for a single valued function 𝜗 (Lie-Barboux theorem [18-19]). Introducing a multivalued (angle) variable Θ, 
∇Θ ∈ Ker curl , we consider a candidate global solution

𝒘 = ∇Ψ × ∇Θ in Ω. 16

The functions Ψ and Θ are the Clebsch potentials of the Clebsch representation (16). Finding a solution of (1) in 
the form (16) amounts to determining Θ and 𝒑 such that

∇ × ∇Ψ × ∇Θ = ∇Ψ × 𝒑 in Ω. 17

Eq. (17) is equivalent to

∇ ⋅ ∇Ψ × ∇Θ × ∇Ψ = 0 in Ω. 18

Solutions of (1) with representation (16) are solutions of (18). In the following we will study eq. (18).



A 2nd Order Linear Degenerate Elliptic PDE
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Eq. (18) can be written as


𝑖,𝑗=1

3

∇Ψ 2 𝛿𝑖𝑗 −
Ψ𝑖Ψ𝑗

∇Ψ 2 Θ𝑖𝑗 +
𝑖=1

3 1

2
∇Ψ 𝑖

2 −Ψ𝑖ΔΨ Θ𝑖 = 0 in Ω. 19

The coefficient matrix 

𝔞𝑖𝑗 = ∇Ψ 2 𝛿𝑖𝑗 −
Ψ𝑖Ψ𝑗

∇Ψ 2 , 𝑖, 𝑗 = 1,2,3. 20

Is symmetric and positive semi-definite

𝔞𝑖𝑗𝜉
𝑖𝜉𝑗 = ∇Ψ × 𝝃 2 ≥ 0, 𝝃 ∈ ℝ3, 𝒙 ∈ Ω. 21

• For given Ψ, eq. (18) is a 2nd order linear degenerate elliptic PDE for the unknown Θ.

• If Θ is a solution of (18), so if Θ + 𝑓 Ψ .



Variational Formulation of Equation (18)
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Consider the magnetic energy (kinetic energy in the fluid analogy)

𝐸Ω =
1

2
න
Ω

𝒘2𝑑𝑉 =
1

2
න
Ω

∇Ψ × ∇Θ 2 𝑑𝑉 . 22

If variations 𝛿Θ vanish on 𝜕Ω,

𝛿𝐸Ω = −න
Ω

𝛿Θ∇ ⋅ ∇Ψ × ∇Θ × ∇Ψ 𝑑𝑉

→ ∇ ⋅ ∇Ψ × ∇Θ × ∇Ψ = 0 in Ω.

23

• Hence, stationary points of 𝐸Ω correspond to solutions of (18). However, the functional 𝐸Ω lacks coercivity 
𝐸Ω ≥ 𝑐 Θ 2 with respect to standard norms due to the cross product.

• The degeneracy is not expected to prevent the existence of solutions, but simply to affect their uniqueness.



Reformulation as a 2nd Order Linear Elliptic PDE on a Toroidal Surface
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A global solution of (1) can be obtained by solving (18) on each toroidal surface ΣΨ0
= 𝒙 ∈ Ω;Ψ 𝒙 = Ψ0 ∈ ℝ

and by patching solutions. The degeneracy of eq. (18) can be removed by fixing the mean value Θ of the 
unknown Θ over each surface. 

𝜕

𝜕𝜇
𝐽 𝑔𝜈𝜈

𝜕Θ

𝜕𝜇
− 𝑔𝜇𝜈

𝜕Θ

𝜕𝜈
+

𝜕

𝜕𝜈
𝐽 𝑔𝜇𝜇

𝜕Θ

𝜕𝜈
− 𝑔𝜇𝜈

𝜕Θ

𝜕𝜇
= 0 in ΣΨ0

. 24

Here 𝑔11 = 𝑔𝜇𝜇, 𝑔12 = 𝑔𝜇𝜈, 𝑔22 = 𝑔𝜈𝜈. Eq. (24) is equivalent to:

𝑔𝜈𝜈Θ𝜇𝜇 − 2𝑔𝜇𝜈Θ𝜇𝜈 + 𝑔𝜇𝜇Θ𝜈𝜈 +
𝐽𝜇

𝐽
𝑔𝜈𝜈 +

𝜕𝑔𝜈𝜈
𝜕𝜇

−
𝐽𝜈
𝐽
𝑔𝜇𝜈 −

𝜕𝑔𝜇𝜈

𝜕𝜈
Θ𝜇

+
𝐽𝜈
𝐽
𝑔𝜇𝜇 +

𝜕𝑔𝜇𝜇

𝜕𝜈
−
𝐽𝜇

𝐽
𝑔𝜇𝜈 −

𝜕𝑔𝜇𝜈

𝜕𝜇
Θ𝜈 = 0 in ΣΨ0

.

25

Consider curvilinear coordinates 𝑥1, 𝑥2, 𝑥3 = 𝜇, 𝜈, Ψ  with 𝜇, 𝜈 ∈ [0,2𝜋) angle coordinates spanning the 
toroidal surfaces ΣΨ0

, 𝜕𝑖, 𝑖 = 1,2,3, tangent vectors, 𝐽 = ∇𝜇 ⋅ ∇𝜈 × ∇Ψ the Jacobian determinant, and 𝑔𝑖𝑗 = 𝜕𝑖 ⋅

𝜕𝑗 the covariant metric tensor. On each ΣΨ0
eq. (18) becomes 



Reformulation as a 2nd Order Linear Elliptic PDE on a Toroidal Surface
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Eq. (25) has the form


𝑖,𝑗=1

2

𝑎𝑖𝑗Θ𝑖𝑗 + lower order terms = 0 in ΣΨ0
, 26

where the coefficient matrix 𝐴 with components 𝑎𝑖𝑗, 𝑖, 𝑗 = 1,2, is given by

𝐴 = 𝐴𝑇 =
𝑔𝜈𝜈 −𝑔𝜇𝜈
−𝑔𝜇𝜈 𝑔𝜇𝜇

. 27

Both eigenvalues 𝜆± = Tr𝐴 ± Tr𝐴 2 − 4det𝐴 are real and positive with 𝜆+ ≥ 𝜆− > 0 since Tr𝐴 = 𝑔𝜇𝜇 + 𝑔𝜈𝜈 >

0, det𝐴 = 𝑔𝜇𝜇𝑔𝜈𝜈 − 𝑔𝜇𝜈
2 = 𝜕𝜇 × 𝜕𝜈

2
> 0, and Tr𝐴 2 > Tr𝐴 2 − 4det𝐴 = 𝑔𝜇𝜇 − 𝑔𝜈𝜈

2
+ 4𝑔𝜇𝜈

2 ≥ 0. 

𝑎𝑖𝑗𝜉
𝑖𝜉𝑗 ≥ 𝜆− 𝝃 2 ≥ 0, 𝝃 ∈ ℝ2, 𝜇, 𝜈 ∈ 0,2𝜋 , Ψ = Ψ0. 28

Hence, eq. (24) is a 2nd order linear (strictly) elliptic PDE on each toroidal surface ΣΨ0 :



Boundary Conditions

19/40 [20] D. Gilbarg and N. S. Trudinger, in Elliptic Partial Differential Equations of Second Order, Springer, p. 107 (1998).

Under appropriate boundary conditions, solutions Θ of (24) exist and are unique by elliptic theory [20]. However, 
not all boundary conditions result in a nontrivial 𝒘. For example, setting Θ = 0 on 𝜕𝐷, with 𝐷 = 0,2𝜋 2, gives 
Θ = 0 in 𝐷, and thus 𝒘 = ∇Ψ × ∇Θ = 𝟎 in 𝐷. Furthermore, even if ∇Θ ≠ 𝟎, there is no guarantee that ∇Θ, and 
thus 𝒘,  is periodic in 𝜇 and 𝜈. We therefore look for solutions of the type:

𝜕

𝜕𝜇
𝐽 𝑔𝜈𝜈

𝜕𝜌

𝜕𝜇
− 𝑔𝜇𝜈

𝜕𝜌

𝜕𝜈
+

𝜕

𝜕𝜈
𝐽 𝑔𝜇𝜇

𝜕𝜌

𝜕𝜈
− 𝑔𝜇𝜈

𝜕𝜌

𝜕𝜇
=

𝜕

𝜕𝜈
𝐽𝑔𝜇𝜈 −

𝜕

𝜕𝜇
𝐽𝑔𝜈𝜈 in 𝐷. 30

Eq. (30) is strictly elliptic (it has the same coefficient matrix 𝐴). If a solution 𝜌 of (30) exists, the corresponding Θ 

is nontrivial since ∇Θ = ∇𝜇 + ∇𝜌 is periodic in 𝜇 and 𝜈 and Θ𝜇 = 1 + 𝜌𝜇 = 4𝜋2 → 𝑤𝜈 = 𝐽Θ𝜇 ≠ 0.

• Eq. (1) has been reduced to the existence of a periodic solution (with periodic derivatives) of (30) that 
depends in a regular fashion on the surface label Ψ.

Θ = 𝜇 + 𝜌, 𝜌 = න
𝐷

𝑑𝜇𝑑𝜈 𝜌 = 0, 𝜌 periodic in 𝐷 (with periodic derivatives) 29

Substituting eq. (29), eq. (24) becomes:



Boundary Conditions
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Although the coefficients in (30) are periodic in 𝜇 and 𝜈, Dirichlet boundary conditions for 𝜌 on 𝜕𝐷 are not 
enough to ensure the periodicity of 𝜌𝜇, 𝜌𝜈, 𝜌Ψ and so on: the regularity of the solution 𝒘 = ∇Ψ × ∇Θ will reflect 

the degree of periodicity of 𝜌 and its partial derivatives. Indeed,   

𝒘 = 𝐽
𝜕Θ

𝜕𝜇
𝜕𝜈 −

𝜕Θ

𝜕𝜈
𝜕𝜇 ,

∇ × 𝒘 = 𝐽
𝜕

𝜕Ψ
𝐽 𝑔𝜇𝜈

𝜕Θ

𝜕𝜇
− 𝑔𝜇𝜇

𝜕Θ

𝜕𝜈
−

𝜕

𝜕𝜇
𝐽 𝑔𝜈Ψ

𝜕Θ

𝜕𝜇
− 𝑔Ψ𝜇

𝜕Θ

𝜕𝜈
𝜕𝜈

+𝐽
𝜕

𝜕Ψ
𝐽 𝑔𝜇𝜈

𝜕Θ

𝜕𝜈
− 𝑔𝜈𝜈

𝜕Θ

𝜕𝜇
+

𝜕

𝜕𝜈
𝐽 𝑔𝜈Ψ

𝜕Θ

𝜕𝜇
− 𝑔Ψ𝜇

𝜕Θ

𝜕𝜈
𝜕𝜇
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For 𝒘 and ∇ × 𝒘 to be continuous in Ω, Θ𝜇 = 1 + 𝜌𝜇, Θ𝜈 = 𝜌𝜈, Θ𝜇𝜇 = 𝜌𝜇𝜇, Θ𝜇𝜈 = 𝜌𝜇𝜈 and Θ𝜈𝜈 = 𝜌𝜈𝜈 must be 

periodic in 𝜇 and 𝜈. Conversely, if they fail to be periodic, 𝒘 and ∇ × 𝒘 will exhibit discontinuities on each 
toroidal surface in correspondence of the curves 𝛾𝜕𝐷 = {𝒙 ∈ Ω ∶ (𝜇, 𝜈) ∈ 𝜕𝐷,Ψ = Ψ0}.
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Strategy: since there are no requirements on the boundary values of Θ = 𝜇 + 𝜌 on 𝜕𝐷, the idea is to construct 
a weak periodic solution of equation (30) in a two-dimensional lattice extending over ℝ2 with unit cell 𝐷 by 
introducing an appropriate Hilbert space 𝐻per

1 (𝐷) ⊂ 𝐻1 (𝐷) containing periodic functions. Then, interior 

regularity can be used to infer smoothness of weak solutions, and thus periodicity of their derivatives. 

Lemma 1. Let 𝑉 = 𝐷 × 𝑈 denote a doubly periodic three-dimensional domain spanned by coordinates 𝜇, 𝜈 ∈ [0,2𝜋), 
𝛹 ∈ 𝑈, with 𝐷 = (0,2𝜋)2 and 𝑈 ⊂ ℝ a bounded open interval. Define 𝑥1, 𝑥2 = 𝜇, 𝜈 . Let 𝛼𝑖𝑗 ∈ 𝐶∞ ℝ2 × 𝑈 , 
𝑖, 𝑗 = 1,2, and 𝑆 ∈ 𝐶∞ ℝ2 × 𝑈  be smooth functions which are periodic in 𝐷. Further assume that 𝑆 =

𝐷 𝑑𝜇𝑑𝜈 𝑆 = 0, and that 𝛼𝑖𝑗 is strictly elliptic on each level set of 𝛹, i.e.

𝛼𝑖𝑗𝜉𝑖𝜉𝑗 ≥ 𝜆 𝝃 2, 𝝃 ∈ ℝ2, 𝜇, 𝜈 ∈ 0,2𝜋 , 𝛹 ∈ 𝑈,

for some positive constant 𝜆. Then, the boundary value problem

𝜕

𝜕𝑥𝑖
𝛼𝑖𝑗

𝜕𝜌

𝜕𝑥𝑗
= 𝑆, 𝜌 = න

0

2𝜋

𝑑𝜇න
0

2𝜋

𝑑𝜈 𝜌 = 0 in 𝑉, 𝜌 periodic in 𝐷,

admits a unique periodic solution 𝜌 ∈ 𝐶∞ ℝ2 × 𝑈  with periodic derivatives of all orders. In particular, for fixed 
𝛹 ∈ 𝑈 the function of two variables 𝜌𝛹 = 𝜌 𝜇, 𝜈, 𝛹  satisfies 𝜌𝛹 ∈ 𝐶∞ ℝ2 ∩ 𝐻per

1 𝐷 . Here, 

𝐻per
1 𝐷 = 𝜌𝛹 ∈ 𝐻1 𝐷 ; 𝜌𝛹 = 0, 𝜌𝛹 periodic in 𝐷 .
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[21] A. Bensoussan, J. L. Lions, and G. Papanicolau, Elliptic operators, in Asymptotic analysis for periodic structures, North-Holland, pp. 13-14 (1978).

Proof: in a two-dimensional lattice with unit cell 𝐷, a periodic solution satisfies

𝜌 𝜇, 𝜈, Ψ = 𝜌 𝜇 + 2𝜋𝑚, 𝜈 + 2𝜋𝑛,Ψ , 𝑚, 𝑛 ∈ ℤ. 32

Hence, If derivatives of 𝜌 exist, they are periodic as well.  

𝜕

𝜕𝑥𝑖
𝛼𝑖𝑗

𝜕𝜌Ψ

𝜕𝑥𝑗
= 𝑆, 𝜌Ψ = 0 in 𝐷, 𝜌Ψ periodic in 𝐷. 33

Indeed, note that 𝐻per
1 𝐷 can be identified with the completion of 𝐶per

∞ 𝐷  with respect to the 𝐻1 norm, with

Next, note that for each Ψ ∈ 𝑈 the strict ellipticity of 𝛼𝑖𝑗, the regularity and periodicity of 𝛼𝑖𝑗 and 𝑆, and the 

condition ⟨𝑆⟩ = 0 guarantee that the boundary value problem (33) admits a unique solution 𝜌Ψ ∈ 𝐻per
1 𝐷  [21].

𝐶per
∞ 𝐷 = 𝐶∞ ℝ2 ∩ 𝐻per

1 𝐷 = 𝜌𝛹 ∈ 𝐶∞ ℝ2 ; 𝜌𝛹 = 0, 𝜌𝛹 periodic in 𝐷 . 34
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[22] J. Necas, The Poincar ́e inequality, in Direct Methods in the Theory of Elliptic Operators, Spinger, p. 7 (2012).

On the other hand, the weak formulation of (33) is

𝜌Ψ, 𝜓 + ℱ𝑆[𝜓] = න
𝐷

𝛼𝑖𝑗
𝜕𝜓

𝜕𝑥𝑖
𝜕𝜌Ψ

𝜕𝑥𝑗
+ 𝑆𝜓 𝑑𝜇𝑑𝜈 = 0 ∀𝜓 ∈ 𝐻per

1 𝐷 , 35

where the inner product

𝜌Ψ, 𝜓 = න
𝐷

𝛼𝑖𝑗
𝜕𝜓

𝜕𝑥𝑖
𝜕𝜌Ψ

𝜕𝑥𝑗
𝑑𝜇𝑑𝜈 , 36

defines a norm 𝜌Ψ
𝐻per
1 𝐷

= 𝜌Ψ, 𝜌Ψ
1/2

 in 𝐻per
1 𝐷 due to the strict ellipticity of 𝛼𝑖𝑗. Indeed, using the 

Poincaré inequality [22], we have

Hence, 𝐻per
1 𝐷 is a Hilbert space with respect to the norm ⋅ 𝐻per

1 𝐷 . 

𝜌Ψ, 𝜌Ψ ≥ 𝜆 ∇ 𝜇,𝜈 𝜌
Ψ

𝐿2 𝐷

2
≥ 𝐶 𝜌Ψ

𝐻1 𝐷

2
, 37
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Next, the linear functional

ℱ𝑆 𝜓 = න
𝐷

𝑆𝜓 𝑑𝜇𝑑𝜈 ≤ 𝐶 𝜓 𝐻per
1 𝐷 , 35

Is bounded. Hence, the Riesz representation theorem guarantees the existence of a unique element 𝜌Ψ ∈

𝐻per
1 (𝐷) such that ℱ𝑆 [𝜓] = − 𝜌Ψ, 𝜓 , which thus provides a weak solution of (33). 

The construction holds even if the origin of the cell 𝐷 is shifted by an arbitrary amount in ℝ2. Let 𝐷′ ⊂ ℝ2

denote the shifted cell and 𝜌′Ψ ∈ 𝐻per
1 𝐷′ = 𝐻per

1 (𝐷) the corresponding solution. By interior regularity, any 

irregularity of the solution 𝜌′Ψ that may occur on the boundary 𝜕𝐷′ cannot affect the interior of the domain, and 
it can be shown that the regularity of 𝛼𝑖𝑗 and 𝑆 is propagated to 𝜌′Ψ. In particular, 𝜌′Ψ ∈ 𝐶∞ 𝐷′ (see [23]). Since 
we may take 𝐷′ ∩ 𝐷 ≠ ∅ and 𝜌Ψ = 𝜌′Ψ by uniqueness, this also implies the regularity of the derivatives of 𝜌Ψ

at the original cell boundary 𝜕𝐷, and thus their periodicity. We conclude that 𝜌Ψ ∈ 𝐶per
∞ (𝐷) and that all partial 

derivatives of any order of the function 𝜌Ψ are periodic functions in 𝐷.

𝐷
𝐷′
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We are left with the task of showing that solutions 𝜌Ψ of (33) define a smooth function 𝜌 of Ψ in 𝑈. Define

𝐿 =
𝜕

𝜕𝑥𝑖
𝛼𝑖𝑗

𝜕

𝜕𝑥𝑗
, 𝐿Ψ =

𝜕

𝜕𝑥𝑖
𝛼Ψ
𝑖𝑗 𝜕

𝜕𝑥𝑗
35

The first eq. in (33) is 𝐿𝜌Ψ = 𝑆. Furthermore, the linear operator 𝐿 defines an invertible linear mapping from 
𝐶per
∞ 𝐷  to itself. It follows that 

0 =
𝜕 𝐿𝐿−1

𝜕Ψ
= 𝐿Ψ𝐿

−1 + 𝐿𝐿Ψ
−1. 36

Since 𝐿−1 0 = 0, application of 𝐿−1 to (36) gives 

𝐿Ψ
−1 = −𝐿−1𝐿Ψ𝐿

−1 →
𝜕𝜌

𝜕Ψ
=
𝜕 𝐿−1𝑆

𝜕Ψ
= 𝐿−1 𝑆Ψ − 𝐿Ψ𝜌 →

𝜕𝜌

𝜕Ψ

Ψ

∈ 𝐶per
∞ 𝐷 . 37

Higher order derivatives of 𝐿−1 and 𝜌 can be evaluated by differentiating (36) and 𝜌 = 𝐿−1𝑆. Hence, for each Ψ ∈
𝑈 derivatives of 𝜌 with respect to Ψ of all orders exist and belong to 𝐶per

∞ 𝐷 . It follows that 𝜌 is smooth in Ψ, 

and therefore provides a unique solution 𝜌 ∈ 𝐶∞ ℝ2 × 𝑈  with 𝜌Ψ ∈ 𝐶∞ ℝ2 ∩ 𝐻per
1 𝐷 .    ■
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𝑆 =
𝜕

𝜕𝜈
𝐽𝑔𝜇𝜈 −

𝜕

𝜕𝜇
𝐽𝑔𝜈𝜈 . 38

Let 𝜌 ∈ 𝐶∞ ℝ2 × 𝑈 denote the periodic classical solution of eq. (30) obtained from lemma 1. Evidently, 𝜌 ∈
𝐶∞(Ω) as well. Setting Θ = 𝜇 + 𝜌, it follows that the vector field

𝒘 = ∇Ψ × ∇Θ = 𝐽 Θ𝜇𝜕𝜈 − Θ𝜈𝜕𝜇 = 𝐽𝜕𝜈 + ∇Ψ × ∇𝜌, 39

is a solution 𝒘 ∈ 𝐶∞ Ω of (1). Furthermore, 𝒘 ≠ 𝟎 since Θ𝜇 = 4𝜋2. It may happen however that the solution 

𝒘 is a curl-free (vacuum) solution ∇ × 𝒘 = 𝟎, or a Beltrami field ∇ × 𝒘 = ℎ 𝒘 for some proportionality 

coefficient ℎ 𝒙 . Nevertheless, denoting with 𝑓 Ψ ≠ 0 any smooth function of the variable Ψ such that 
𝜕𝑓

𝜕Ψ
≠ 0, 

it follows that the vector field 𝒘′ = 𝑓 Ψ 𝒘 is a nontrivial solution of (1). Indeed, 

Proof: the hypothesis of lemma 1 are satisfied with 𝛼𝑖𝑗 = 𝐽𝑎𝑖𝑗 and source term

∇ × 𝒘′ × 𝒘′ = −
1

2

𝜕𝑓2

𝜕Ψ
𝒘2∇Ψ ≠ 𝟎, ∇ ⋅ 𝒘′ =

𝜕𝑓

𝜕Ψ
∇Ψ ⋅ 𝒘 = 0. ■ 40
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[24] N. Sato and M. Yamada, Vorticity equation on surfaces with arbitrary topology embedded in three-dimensional Euclidean space, J. Math. Phys. 63, 
093101 (2022).

Remark 1: no symmetry requirements on 𝒘 and Ψ in theorem 1.

Remark 2: In the original formulation of the problem (1), the domain Ω is a torus. However, the result of theorem 
1 applies to a hollow torus. For the solution 𝒘 of theorem 1 to hold in the hollow region as well, the vector field 𝒘
must be well defined when approaching the toroidal axis. This is often the case (see later examples).

Remark 3: in the study of the vorticity equation for fluid flows over two-dimensional surfaces parametrized by Ψ
and embedded in three-dimensional Euclidean space, 

𝜕𝜔Ψ

𝜕𝑡
= 𝐽 Θ,𝜔Ψ , 𝑓, 𝑔 = 𝑓𝜇𝑔𝜈 − 𝑓𝜈𝑔𝜇,

the relation between the component of the vorticity 𝜔Ψ = 𝝎 · ∇Ψ and the stream function Θ is precisely [24]

∇ · [∇Ψ × (∇Θ × ∇Ψ)] = −𝜔Ψ.

The result of lemma 1 thus implies that one can solve for the stream function Θ knowing the vorticity 𝜔Ψ. Notice
that the topology of the level sets of Ψ does not need to be toroidal.
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The numerical example below clarifies the role played by periodic boundary conditions in ensuring the regularity 
of the solution 𝒘 of (1) and its derivatives. Consider the family of toroidal surfaces

Ψ =
1

2
𝑟 − 𝑟0

2 +
1

2
ℰ 𝑧 − ℎ 𝜑, 𝑧 2, 𝑟0, ℰ ∈ ℝ>0 41

A suitable choice of ℎ produces tori without 
continuous Euclidean isometries. For example, ℎ =
𝜖𝑧 sin 𝑚𝜑  with 𝜖 ∈ ℝ>0 and integer 𝑚 ≠ 0 gives 
ℒ𝒂+𝒃×𝒙Ψ = 0 ↔ 𝒂 = 𝒃 = 𝟎.

(a) Axially symmetric torus Ψ = 0.08 with 𝑟0 = ℰ = 1, ℎ = 0.
(b) Torus without continuous Euclidean isometries Ψ = 0.08 with 

𝑟0 = 1, ℰ = 1.6, ℎ = 0.3 𝑧 sin 9𝜑 .

Define curvilinear coordinates 𝜇, 𝜈, Ψ = 𝜑, 𝜗,Ψ  

with 𝜗 = arctan
𝑧

𝑟−𝑟0
and consider equation (30) 

with Dirichlet boundary conditions 𝜌 = 0 on 𝜕𝐷. 

The solution 𝜌 ∈ 𝐶1,𝛼 𝐷 , 0 < 𝛼 < 1, will be 
periodic in 𝐷, although only the partial derivative of 
𝜌 tangential to the boundary 𝜕𝐷 will be periodic, 
while the normal component will not [25-26].

[25] A. Azzam, SIAM J. Math. Anal. 11, 2 (1980). [26] A. Azzam, SIAM J. Math. Anal. 12, 2 (1981).. 
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Note that 𝜌 is periodic in 𝐷, but 𝜌𝜇 = Θ𝜇 − 1 is periodic only between 𝜈 = 0 and 𝜈 = 2𝜋, and 𝜌𝜈 = Θ𝜈 between 

𝜇 = 0 and 𝜇 = 2𝜋. Hence, 𝒘 = ∇Ψ × ∇Θ = 𝐽 Θ𝜇𝜕𝜈 − Θ𝜈𝜕𝜇 exhibits discontinuities on 𝜕𝐷. 

First row: Ψ = 0.16 with 𝑟0 = 1, ℰ = 1.6, ℎ = 0.03 𝑧 sin 𝜑 .
Second row: Ψ = 0.08 with 𝑟0 = 1, ℰ = 1.6, ℎ = 0.3 𝑧 sin 2𝜑 .
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[27] G. Schwarz, in Hodge decomposition - a method for solving boundary value problems, Springer, pp. 67-72 (1995). [28] D. Pfefferl ́e, L. Noakes, and 
D. Perrella, Gauge freedom in magnetostatics and the effect on helicity in toroidal volumes, J. Math. Phys. 62, 093505 (2021). 

In the following, we construct examples of smooth solutions 𝒘 ∈ 𝐶∞(Ω) of eq. (1) such that (∇ × 𝒘) × 𝒘 ≠ 𝟎
in a toroidal domain Ω. To this end, the observation below is useful 

Proposition 1. Let Ω ⊂ ℝ3 be a toroidal volume with boundary 𝜕Ω foliated by toroidal surfaces corresponding to 
level sets of a function Ψ ∈ 𝐶1 ഥΩ . Let 𝝃 ∈ 𝐿𝐻

2 Ω be a harmonic vector field in Ω, with 
𝐿𝐻
2 Ω = 𝝃 ∈ 𝐿2 Ω ; ∇ × 𝝃 = 𝟎, ∇ ⋅ 𝝃 = 0, 𝝃 ⋅ 𝒏 = 0 ,

where 𝒏 denotes the unit outward normal to 𝜕𝛺. Further assume that 𝝃 is foliated by Ψ, that is
𝝃 ⋅ ∇Ψ = 0 in Ω.

Then, the vector field 𝒘 ∈ 𝐻𝜎𝜎
1 Ω  defined as

𝒘 = 𝑓 Ψ 𝝃,
where 𝑓 is any 𝐶1 ഥΩ  function of Ψ, is a nontrivial solution of (1) in Ω such that 

∇ × 𝒘 ×𝒘 = −
1

2

𝜕𝑓2

𝜕Ψ
𝝃 2∇Ψ, ∇ ⋅ 𝒘 = 0.

Here,
𝐻𝜎𝜎
1 Ω = 𝒘 ∈ 𝐿𝜎

2 Ω ; ∇ × 𝒘 ∈ 𝐿𝜎
2 Ω , 𝐿𝜎

2 Ω = 𝒘 ∈ 𝐿2 Ω ; ∇ ⋅ 𝒘 = 0,𝒘 ⋅ 𝒏 = 0 .

Recall that the dimension of the linear space 𝐿𝐻
2 Ω is given by the genus of 𝜕Ω. For a toroidal surface with genus 

1 the space of harmonic vector fields 𝝃 ∈ 𝐿𝐻
2 Ω is therefore 1-dimensional [27-28].  
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Proposition 1 suggests that solutions of (1) can be obtained by identifying harmonic vector fields foliated by 

toroidal surfaces. Example: 𝝃0 = ∇𝜑 is foliated by axially symmetric tori Ψ0 =
1

2
𝑟 − 𝑟0

2 + 𝑧2 . To break axial 

symmetry, we perturb the toroidal angle:

𝜂 = 𝜑 + 𝜖𝜎, 𝜖 ∈ ℝ>0, Δ𝜎 = 0 → 𝝃𝜖 = ∇𝜂 ∈ 𝐿𝐻
2 Ω , 42

where the toroidal domain Ω is bounded by a contour of a function Ψ𝜖  satisfying 𝝃𝝐 ⋅ ∇Ψ𝜖 = 0. Choosing 𝜎 = 𝑥, 

Ψ𝜖 =
1

2
𝑟𝑒−𝜖𝑦 − 𝑟0

2 + 𝑧2 → 𝒘 = 𝑓 Ψ𝜖 𝝃𝜖 . 43

Note that 𝒘 is smooth within Ω for a suitable 𝑓. In addition, 

∇ × 𝒘 ×𝒘 = −
1

2

𝜕𝑓2

𝜕Ψ𝜖

1 − 𝜖𝑦 2 + 𝜖2𝑥2

𝑟2
∇Ψ, ∇ ⋅ 𝒘 = 0. 44

Furthermore, it can be shown that both 𝒘 and Ψ𝜖  are not invariant under continuous Euclidean isometries. 
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Here, Ψ𝜖 = 0.08, 𝑟0 = 1, 𝜖 = 0.18, 𝑓 = eΨ𝜖/2, 𝜎 = 𝑥.
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[29] N. Sato, Z. Qu, D. Pfefferlé, and R. L. Dewar, Phys. Plasmas 28, 112507 (2021). [30] H. Grad, The guiding center plasma, Proc. Symp. Appl. Math. 18, pp. 
162-248 (1967).

The vector field (43) can be regarded as a steady solution of anisotropic MHD [29-30],

∇ × 𝒘 × 𝒘 = ∇ ⋅ Π, ∇ ⋅ 𝒘 = 0 in Ω, Π𝑖𝑗 = 𝑃 −
1

2
𝛾𝒘2 𝛿𝑖𝑗 + 𝛾𝑤𝑖𝑤𝑗 . 45

Indeed, 

1 − 𝛾 ∇ × 𝒘 × 𝒘 = ∇𝑃 −
1

2
𝒘2∇𝛾 + 𝒘 ⋅ ∇𝛾 𝒘, ∇ ⋅ 𝒘 = 𝟎 in Ω, 46

with

𝑃 = 0, 𝛾 = 1 −
1

𝑓2
47

Finally, we remark that (43) is well defined along the toroidal axis 𝑟𝑒−𝜖𝑦 → 𝑟0, 𝑧 → 0 provided that 𝑓 exists in this 
limit (this is the case of 𝑓2 = exp{Ψ𝜖} considered above).



Other Examples

34/40

It is not difficult to generalize the construction leading to (43) to obtain new solutions of both eq. (1) and 
anisotropic MHD. It is sufficient to replace 𝜎 = 𝑥 with a new harmonic function and solve for Ψ𝜖. For  example, 
taking 𝜖, 𝜖′ ∈ ℝ>0 and 𝑚 ∈ ℤ one obtains 

𝜎 = 𝑒𝑚𝑥 cos 𝑚𝑦 ,

𝝃𝜖 = ∇ 𝜑 + 𝜖𝑒𝑚𝑥 cos 𝑚𝑦 ,

Ψ𝜖 =
1

2
𝑟𝑒−𝜖𝑒

𝑚𝑥 sin 𝑚𝑦 − 𝑟0
2
+ 𝑧2𝑒−2𝜖

′𝑍 ,

𝒘 = 𝑓 Ψ𝜖 𝝃𝜖 .

48

• Relation with harmonic conjugate functions in two dimensions. 

• The solution above breaks both continuous and discrete Euclidean symmetries. 
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Applying the Clebsch representation 𝒘 = ∇Ψ × ∇Θ to eq. (2) gives

∇ × ∇Ψ × ∇Θ × ∇Ψ × ∇Θ = ∇Ψ in Ω, 49

which is equivalent to

∇ ⋅ ∇Θ × ∇Ψ × ∇Θ = −1, ∇ ⋅ ∇Ψ × ∇Θ × ∇Ψ = 0, in Ω, Ψ = constant on 𝜕Ω 50

• While in the study of eq. (1) the function Ψ was given, it is convenient to regard system (50) as coupled partial 
differential equations for the unknowns Ψ and Θ with Ω given. 

• One expects that fixing Ψ will prevent, in general, the existence of regular solutions Θ fulfilling both 
equations in (50). 

• Notice that boundary conditions on Ψ have been imposed to ensure that 𝒘 · 𝒏 = 0 on 𝜕Ω. 
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Eq. (50) admits a variational principle. The target functional is 

𝐸Ω
′ =

1

2
න
Ω

∇Ψ × ∇Θ 2 −Ψ 𝑑𝑉 . 51

Assuming 𝛿Θ = 𝛿Ψ on 𝜕Ω, 

𝛿𝐸Ω
′ = −න

Ω

𝛿Ψ 1 + ∇ ⋅ ∇Θ × ∇Ψ × ∇Θ 𝑑𝑉 − න
Ω

𝛿Θ ∇ ⋅ ∇Ψ × ∇Θ × ∇Ψ 𝑑𝑉 . 52

Hence, stationary points of the functional 𝐸Ω
′ assign solutions of (50). Now suppose that solutions (Ψ, Θ) of (50) 

are sought in the Sobolev space 𝐻1 Ω with norm || · ||𝐻1 Ω . From (51) it is clear that the functional 𝐸Ω
′ is not 

coercive, i.e. it does not satisfy a condition of the form 𝐸Ω
′ ≥ 𝑐1 Ψ

𝐻1 Ω

2
+ 𝑐2 Θ

𝐻1 Ω

2
+ 𝐶 for some constants 

with 𝑐1, 𝑐2, 𝐶 ∈ 𝑅, 𝑐1 > 0, and 𝑐2 > 0. Indeed, the value of (51) can be kept finite, |𝐸Ω
′ | < ∞, even if Ψ

𝐻1 Ω

2
, 

Θ
𝐻1 Ω

2
→ ∞ by setting Θ = Ψ while taking ∇Ψ

𝐿2 Ω

2
= ∇Θ

𝐿2 Ω

2
→ ∞ where || · ||𝐿2 Ω denotes the 

standard 𝐿2 Ω norm. The lack of coercivity prevents the application of variational methods [31] to establish the 
existence of a relative minimizer of 𝐸Ω

′ , and thus a solution of (50) in the relevant function space.
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The situation is different if the variable Ψ is fixed, i.e. if one considers eq. (23) arising from the functional 𝐸Ω in 
the context of eq. (1). Using the change of variables Θ = 𝜇 + 𝜌 and coordinates (𝑥1, 𝑥2, 𝑥3) = (𝜇, 𝜈, Ψ),

𝐸Ω =
1

2
න
𝑈

𝑑Ψන
𝐷


𝑖,𝑗=1

2

𝐽𝑎𝑖𝑗𝜌𝑖𝜌𝑗 − 2𝜌
𝜕 𝐽𝑎𝜇𝑖

𝜕𝑥𝑖
+ 𝐽𝑎𝜇𝜇 𝑑𝜇𝑑𝜈 , 53

For each Ψ ∈ 𝑈 we may therefore identify an energy functional

𝐸𝐷 =
1

2
න
𝐷


𝑖,𝑗=1

2

𝐽𝑎𝑖𝑗𝜌𝑖𝜌𝑗 − 2𝜌
𝜕 𝐽𝑎𝜇𝑖

𝜕𝑥𝑖
+ 𝐽𝑎𝜇𝜇 𝑑𝜇𝑑𝜈 ≥ 𝜆 ∇ 𝜇,𝜈 𝜌 𝐿2 𝐷

2
− 2𝑐 𝜌 𝐿2 𝐷

2 − 𝐶. 54

Here, 𝜆, 𝑐, and 𝐶 are positive real constants and we used the strict ellipticity of 𝐽𝑎𝑖𝑗. Recalling that ⟨𝜌⟩ = 0 and 

applying the Poincaré inequality, 

𝐸𝐷 ≥
𝜆

4
𝜌 𝐻1 𝐷

2 −
4𝑐2

𝜆
− 𝐶. 55

Hence, 𝐸𝐷 is coercive with respect to the 𝐻1 𝐷 norm since 𝐸𝐷 → ∞ when 𝜌
𝐻1 𝐷

→ ∞. Then, for each Ψ

there exist a relative minimizer 𝜌 ∈ 𝐻per
1 𝐷 of 𝐸𝐷, which corresponds to a solution of equation (30).



Considerations on Quasisymmetry

38/40

[12] E. Rodriguez, P. Helander, and A. Bhattacharjee, Phys. Plasmas 27, 062501 (2020). [32] M. P. Bernardin, R. W. Moses, and J. A. Tataronis, The Physics 
of Fluids 29, 2605 (1986). 

Quasisymmetry is a desirable feature for the confining magnetic field in stellarators, because it ensures steady 
confinement of the burning plasma within a finite volume of space [12]. A solution 𝒘 of eq. (2) is quasisymmetric
if there exists a quasisymmetry 𝒖 𝒙 and a function 𝑔 Ψ with ∇𝑔 ≠ 𝟎 such that  

𝒖 × 𝒘 = ∇𝑔 Ψ , 𝒖 ⋅ ∇𝒘2 = 0, ∇ ⋅ 𝒖 = 0 in Ω. 56

Proposition 2: suppose that 𝝃 ∈ 𝐿𝐻
2 Ω is a harmonic vector field in a toroidal domain Ω foliated by nested toroidal 

surfaces corresponding to contours of a function Ψ ∈ 𝐶1 ഥΩ . Further assume that

𝝃 ⋅ ∇Ψ = 0 in Ω,

and that 𝝃 2 = 𝝃 2 Ψ . Then, the vector field 𝒘 = 𝑓 Ψ 𝝃 ∈ 𝐻𝜎𝜎
1 Ω , with 𝑓 ∈ 𝐶1 ഥΩ , solves (2) and is 

quasisymmetric with quasisymmetry

𝒖 = 𝝃 × ∇Ψ ∈ 𝐿𝜎
2 Ω .

The requirement 𝝃 2 = 𝝃 2 Ψ is a stringent condition related to the notion of isodynamic magnetic field [32]. 
Therefore, the existence of such configurations is nontrivial.



Concluding Remarks

• We studied eq. (1), which determines a solenoidal vector field 𝒘 such that both 𝒘 and ∇ × 𝒘

are foliated by a family of nested toroidal surfaces Ψ. 

• Eq. (1) represents a generalization of a eq. (2) encountered in fluid mechanics and MHD, which 

describes steady Euler flows and equilibrium magnetic fields. 

• A general theory on the existence of solutions of eq. (2) is not available due its nontrivial 

characteristic surfaces. Analysis of the simpler problem posed by eq. (1) may therefore 

provide insight into the space of solutions of eq. (2).

• Theorem 1 shows that nontrivial solutions 𝒘 in the class 𝐶∞ Ω of eq. (1), where Ω is a hollow 

toroidal volume, always exist for a given family of smooth nested toroidal surfaces Ψ. The 

proof relies on the reduction of eq. (1) to a two-dimensional linear elliptic 2nd order PDE (30) 

for each toroidal surface with the aid of Clebsch potentials. Regular periodic solutions for 

these equations exist by elliptic theory and determine a smooth solution of problem (1). 
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Concluding Remarks

• Examples of smooth solutions in toroidal volumes were constructed analytically such that 

both the bounding surface and the solution are not invariant under continuous Euclidean 

isometries. Such solutions can be regarded as solutions of anisotropic MHD.

• The formulation of eq. (2) in terms of Clebsch potentials suggests that simultaneous 

optimization of the Clebsch potentials Ψ and Θ is needed to find solutions: the shape of the 

toroidal surfaces Ψ (and possibly the profile of the domain Ω itself) should be adjusted 

together with the variable Θ to accommodate the solution within Ω. 

• If solutions are sought in the form 𝒘 = 𝑓 (Ψ)𝝃, with 𝝃 a harmonic vector field in Ω, solving (2) 

amounts to finding a harmonic vector field foliated by toroidal surfaces Ψ and such that the 

modulus 𝝃 2 is itself a function of Ψ. 

• If such kind of solutions of (2) could be found, they would also guarantee quasisymmetry, and 

thus magnetic confinement of a plasma within a finite volume of space.
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Thank you for your attention!
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