

大電流高温超伝導積層型導体の研究開発と 核融合炉マグネットへの適用検討

0 0

Development of Large-Current High-Temperature Superconducting Stacked-Type Conductor and Its Application to Fusion Magnets

核融合科学研究所 超伝導・低温エ学ユニット 柳長門

Nagato Yanagi Superconductivity and Cryogenics Unit National Institute for Fusion Science

ユニット成果報告会 2024年5月9日

High-Temperature Superconducting Magnet Option

Fusion reactor designs with HTS magnet in the World ARC & SPARC (MIT/CFS) FFHR-d1 (NIFS) **STEP (UKAEA)**

Renaissance Fusion

3/22

Proxima Fusion

Tokamak Energy

FNSF-ST (PPPL)

Realta Fusion

EU DEMO HTS option (EUROfusion)

CFETR for CS coils (ASIPP)

Type One Energy

Large-current HTS conductors developed for fusion magnets

Achievement of 20 K, 20 T by SPARC TFMC (Sep. 2021) with NINT (No-Insulation No-Twist) coil (by MIT / CFS)

HTS conductor development at NIFS for the next-generation fusion experimental devices

STARS

(Stacked-Tapes Assembled in Rigid Structure)

Current capacity: 10-20 kA @ > 8 T, ~20 K
Current density: 80 A/mm²

FAIR (FSW, Al-alloy, Indirect-cooling, REBCO) Friction Stir Welding (FSW) Aluminum alloy Pure aluminum sheet **Stacked REBCO tapes** WISE (Wound and Impregnated Stacked Elastic tapes)

100 kA-class HTS Conductor for FFHR-d1 Helical Fusion Reactor

"STARS" (Stacked Tapes Assembled in Rigid Structure)

		Copper stabilizer	
Operation current	94 kA @12 T	YBCO Tapes	
Operation temperature	20 K	$\left(\left(\right) \right)$	
Conductor size	62 mm × 62 mm		
Current density	24.5 A/mm ²	E	45 mm
Number of tapes	40	62 L	
Cabling method	Simple Stacking		
Stabilizer	OFC		
Outer jacket	Stainless Steel	Electrical insulation	
Electrical insulation	Organic or Inorganic	Stainless-steel jacket	
Cooling method	GHe / LH ₂	STARS	STARS
Superconductor	REBCO	for FFHR-d1 94 kA, 25 A/mm ²	for FFHR-b3 66 kA, 80 A/mm ²

Simply-stacked HTS conductor for DC helical coils

- > Non-uniform current distribution may be allowed
- High mechanical strength (no void & local deformation)
- Low cost / low-resistance joint
- Development since 2007

"Can we apply simple-stacking conductors to large coils?"

- Twisting and transposition are the "iron rules" to avoid non-uniform current distribution (NUCD)
- NUCD makes Low-Temperature Superconducting (LTS) conductors unstable with a premature quench at a high ramp rate (Ramp-Rate Limitation)
- Most of the conductor designs for HTS have employed twisting and/or transposing
- → If we can employ simple stacking, we may have robust and low-cost eonductors ...

"HTS has much higher cryogenic stability margin than LTS... The iron rules for LTS may not have to be followed by HTS..."

➔ Working hypothesis with no clear proof

120

Sample Current (kA)

-20

0

9/22

20 kA-class STARS conductor with internal electrical insulation

In FY2020, new conductor samples (1-m and 3-m length) with internal electrical insulation were fabricated at Metal Technology Co. Ltd. (Toki factory)

The same ~4 kA critical current was observed in liquid nitrogen, as was observed for the former sample without electrical insulation

57.8 A/mm²

20 kA-class STARS Conductor

- Next phase development of 20-kA-class conductor with long length to be applied to the next generation fusion experimental devices
 - High current density of 80 A/mm² is a big target
- A 3-m-long conductor sample
 - **Fabricated by HITACHI Ltd.**
 - > 45 REBCO tapes (Fujikura FESC-SCH04)
 - Laser beam welding of SS jacket

Laser Beam Welding

Temperature at the inner wall of Cu stabilizer was 44 °C << 200 °C (allowable limit for REBCO tapes)

11/22

Fabrication of 20-kA-class STARS conductor, 6-m sample

20-kA-class STARS conductor, 6-m sample experiment

Repetitive excitations with fast ramp rate

100 times of repetitive excitations up to 18 kA @20 K, 8 T with a fast ramp rate of 1 kA/s

Residual magnetic field after ramp-down in the 2nd experiment

- Residual magnetic field was measured in the second experiment at 0 T, 3 T, 6 T, and 8 T
- At 0 T, the decay time constant was much longer than that at 8 T (in the 1st experiment) due to lower joint resistance
- **•** Residual magnetic field saturates with a fast ramp rate, by reaching the critical current (?)

Non-uniform current distribution in STARS

- Five tapes are assumed for the actual 15 tapes (in 2 mm thickness)
- Inductance variations in each tape are evaluated by the geometry of the sample (total self-inductance: ~10.8 µH)
- Contact resistance is assumed as 1 nΩ for each tape (estimated from the joint resistance across the current feeders)

- Significant non-uniform current distribution is observed
- Maximum current in the innermost tape is limited by the critical current
- Fairly good agreement with the observed magnetic field waveform (Hall probe attached directly to the conductor)
- No quench in experiment

Discussion on the applicability to large-scale fusion magnets

	STARS Sample	1 DP of ITER-TF
Conductor length	~6 m	~4800 m
L (self-inductance)	~10 µH	~20 mH
ΔL (inductance difference)	$\sim 1 \times 10^{-4} \ \mu H$	$\sim 1 \times 10^{-3} \ \mu H$
Joint Resistance	~1 nΩ	~1 nΩ
dI/dt	~1 kA/s	~10 A/s
Ratio $\Delta L dI/dt$ vs. R	~10	~1

- At high ramp rate, significant non-uniform current distribution (NUCD) is observed
- Maximum current in the inner tapes is limited by the critical current
- A stable operation might be possible even at ~4 kA/s
- We may allow NUCD within the thin HTS area
- Further examination will have to be done to determine the stability limit by combining thermal calculation

Three innovations with STARS conductor

- Simple stacking of REBCO tapes → High-strength conductor (electromagnetic stress resistance)
- Internal electrical insulation → High-strength coil (equivalent to radial plate after winding)
- Fabrication by joint-winding with robot → High-speed winding, applicable to 3D and large coils

Improvement of Mechanical Lap Joint

S. Ito, et al. (Tohoku Univ.)

- ✓ Joint resistivity was reduced by 60%
- ✓ Variation of resistance was reduced
- ✓ Not need for oxygen annealing

T. Nishio et al., IEEE Trans. Appl. Supercond. 27 (2017) 4603305 S. Ito et al., Fusion Eng. Des. 146 (2019) 590

Demonstration of 9-H HTS magnet with a model coil

R&D coils for subcooled tests using NbTi/Cu/Al conductors for LHD helical coils (2002-2005)

Comparison with SPARC TF Model Coil

	STARS R&D	SPARC TFMC
Rated Current	18 kA	40 kA
No. of turns	900	256
Inner radius	300 mm	530 mm
Outer radius	1100 × 1800 mm	1890 × 2890 mm
Total current	16.2 MA	10.24 MA
Current density	80 A/mm ²	153 A/mm ²
Maximum Field	20.3 T	20.1 T
Operation Temp.	20 K	20 K
Coolant	Helium gas	Supercritical helium
REBCO tape length	47 km	270 km
Inductance	650 mH	140 mH
Stored energy	105 MJ	110 MJ
Winding method	STARS conductor with long-length winding / joint winding	Spiral-grooved, stacked-plate tape winding with solder impregnation
Electrical insulation	Internal insulation	No-insulation

Summary

- Three types of large-current HTS conductors are being developed at NIFS for the next-generation fusion experimental devices and future fusion reactors with a high current density of 80 A/mm².
- For the simply-stacked STARS conductor, stable operation has been confirmed with a 6-m, φ600-mm, 3-turn solenoid sample with high ramp-rate excitations of 1 kA/s over 200 repetitions.
- Simple stacking of HTS tapes generates non-uniform current distribution (NUCD), having a long decay time constant, but the conductor is operated stably, which was successfully simulated based on the inductance variation model.
- The simulation is extended to a large-scale continuously-wound coil, such as ITER-TF double-pancake coil, and the result suggests that a stable operation is available even with NUCD formation.
- Feasibility that a simply-stacked HTS conductor may be used in large-scale magnets is suggested, which will be proven by a large-scale R&D coil in our future plan.