核融合炉ダイバータ研究の学際的展開

小林政弘

核融合科学研究所

ユニット成果報告会 2024年5月8日

発表内容:

1. プラズマの熱的不安定性についての天文学分野との共同研究

2. 地球生命の対称性の破れの宇宙起源説の検証

1. プラズマの熱的不安定性についての天文学分野との共同研究

核融合装置のダイバータ磁場配位におけるプラズマエネルギー・粒子の除去

ダイバータ配位:

- セパラトリクス磁気面を形成することで、高温のプラズマを装置壁から乖離させる.
- プラズマのエネルギー・粒子をダイバータ板で集中的に除去する.

→ ダイバータ板への過熱負荷の軽減が課題

ダイバータの放射冷却運転:プラズマのエネルギーを光に変えて熱負荷集中を回避する試み

放射冷却運転:外部から水素燃料以外のガス(Ne, Arなど)を導入し、軌道電子の電子衝突励起・脱励起による放射により、プラズマのエネルギーを光に変えてより広い領域に分散させる手法が研究されている.

放射冷却運転の研究課題:

- 放射領域の安定化
- 冷却効率の向上
- 閉じ込めプラズマへの影響の低減

• 放射冷却運転は熱的不安定性を伴う

熱的不安定の条件:正味の冷却関数*L*(cooling - heating)について

$$\left(\frac{\partial \mathcal{L}}{\partial T}\right)_p < 0 \quad \pm t_c \, \text{it}, \quad \left(\frac{\partial (\mathcal{L}/T)}{\partial T}\right)_p < 0$$

4

熱的不安定性による構造形成、熱的非平衡状態

 冷却関数とプラズマ輸送の非線形性により、放射冷却運転 は高温の安定解から低温の安定解への相転移現象となる。

- 双安定なシステムにおける2相系の形成
 高温閉じ込めプラズマ+低温ダイバータプラズマ
 - 熱的非平衡状態の制御
 放射崩壊の回避

• 熱的不安定性は星間分子雲、太陽コロナでも見られる

実験室プラズマ(核融合)と数値シミュレーション、天体観測(星間プラズマ、太陽コロナ)の比較を通して、 プラズマの構造形成における熱的不安定性の役割を広いパラメータ空間で統合的に理解することを目指す。 星間分子雲の熱的不安定性を特徴付けるパラメータ:cooling time、acoustic scale、Field length

• Cooling time :
$$t_c \sim \frac{n_e T_e}{P_{rad}} V = \frac{n_e T_e}{n_e n_{imp} L(T_e)}$$

- Acoustic scale (parallel) $l_a = c_s t_c = \sqrt{\frac{2T_e}{m_i} \frac{T_e}{n_{imp}L(T_e)}}$:
- Field length: $l_{F\perp,\parallel}$

$$\nabla_{\parallel}(-\kappa_{\parallel}\nabla_{\parallel}T_{e}) \sim n_{e}n_{imp}L(T_{e}) \qquad l_{F\parallel} \sim \sqrt{\frac{\kappa_{\parallel}T_{e}}{n_{e}n_{imp}L(T_{e})}}$$
$$n_{imp} = \sum_{Z} n_{Neon}^{Z+} \qquad \kappa_{\parallel} = \kappa_{0}T_{e}^{2.5} \text{ (1/s/m), (Te in eV)}$$
$$(\kappa_{0} = 2.1 \times 10^{22})$$

• 最不安定長: $l_{TI\parallel} \sim \sqrt{l_a l_{F\parallel}}$

- 星間分子雲では、 $t_c \sim 1$ Myr, $l_a \sim 10 \ pc > l_{F\parallel} \sim 0.1 \ pc$
- 星間衝撃波などによる強い摂動により、熱的不安定性が駆動されWarm Neutral Medium (WNM)からCold Neutral Medium(CNM)へと相転移する.

LHD(核融合プラズマ)での冷却時間、acoustic scale, Field lengthの径方向分布の見積もり

放射冷却が小さい場合:

Acoustic scale > Field length 最不安定長 >> 磁力線周回長 冷却時間 > 径方向エネルギー輸送時間(~数msec)

• 冷却はトロイダル、ポロイダル方向全域で起こっている.

・径方向のエネルギー輸送によって放射冷却領域は安定化されている

LHD(核融合プラズマ)での冷却時間、acoustic scale, Field lengthの径方向分布の見積もり

放射冷却が大きい場合:

Acoustic scale ~ Field length 最不安定長 < 磁力線周回長 冷却時間 << 径方向エネルギー輸送時間

- 冷却はトロイダル、ポロイダル方向に局在化している。
- 2 相構造の形成:閉じ込め領域(高温相)、ダイバータ領域(低温相)
- ・放射領域の安定化は3次元的な輸送を考慮する必要がある→今後解析を進める

相図(圧力-数密度)における核融合プラズマと星間プラズマの熱的不安定性による相転移の比較

星間プラズマにおいて磁場効果による相転移の軌跡の変化が核融合プラズマの軌跡と類似
 → 磁場を横切る輸送の重要性

星間分子雲

LHDプラズマ

Unpublished data

Unpublished data

9

核融合プラズマの熱的不安定性を特徴付けるパラメータ:cooling time、acoustic scale、Field length

• Cooling time :
$$t_c \sim \frac{n_e T_e}{P_{rad}} V = \frac{n_e T_e}{n_e n_{imp} L(T_e)}$$

• Acoustic scale (parallel)
$$l_a = c_s t_c = \sqrt{\frac{2T_e}{m_i} \frac{T_e}{n_{imp}L(T_e)}}$$

- Perpendicular scale: $l_{\perp} = \sqrt{D_{\perp}t_c}$
- Field length: $l_{F\perp,\parallel}$

$$\nabla_{\parallel}(-\kappa_{\parallel}\nabla_{\parallel}T_{e}) \sim n_{e}n_{imp}L(T_{e}) \qquad l_{F\parallel} \sim \sqrt{\frac{\kappa_{\parallel}T_{e}}{n_{e}n_{imp}L(T_{e})}}$$

$$n_{imp} = \sum_{Z} n_{Neon}^{Z+} \qquad \kappa_{\parallel} = \kappa_{0}T_{e}^{2.5} \text{ (1/s/m), (Te in eV)}$$

$$(\kappa_{0} = 2.1 \times 10^{22})$$

$$\nabla_{\perp}(-n_{e}\chi_{\perp}\nabla_{\perp}T_{e}) \sim n_{e}n_{imp}L(T_{e}) \qquad l_{F\perp} \sim \sqrt{\frac{\chi_{\perp}T_{e}}{n_{imp}L(T_{e})}}$$

 $l_{TI\perp} \sim \sqrt{l_{\perp} l_{F\perp}}$

• 最不安定長 : $l_{TI\parallel} \sim \sqrt{l_a l_{F\parallel}}$

- 磁場閉じ込め核融合では、磁力線を横切る方向の特
 性長も重要になると考えられる。
 → 星間分子雲への応用
- 高温相と低温相の遷移層(**大きな温度勾配**)における乱 流の発生・輸送にも着目する.

核融合研一般共同研究:小林将人(ケルン大学) 「星間分子雲形成と核融合プラズマ放射冷却における熱的不 安定性の普遍的理解に向けた研究」

2. 地球生命の対称性の破れの宇宙起源説の検証

研究の背景:分子のキラリティ、対称性の破れ、その起源

星間空間での多くの分子の観測

Table 2 Molecules^a detected in the interstellar or circumstellar medium

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	>12 atoms	
H ₂	C ₃ *	c-C ₃ H	C ₅ *	C ₅ H	C ₆ H	CH ₃ C ₃ N	CH ₃ C ₄ H	CH ₃ C ₅ N (?)	HC ₉ N	C ₆ H ₆ * (?)	HC11N	
AIF	C ₂ H	<i>I</i> -C ₃ H	C ₄ H	$l-H_2C_4$	CH ₂ CHCN	HCOOCH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO				
AICI	C ₂ O	C ₃ N	C ₄ Si	$C_2H_4^*$	CH ₃ C ₂ H	CH ₃ COOH	(CH ₃) ₂ O	$(CH_2OH)_2$ (?)			-	
C_{2}^{**}	C_2S	C ₃ O	$l-C_3H_2$	CH ₃ CN	HC ₅ N	C ₇ H	CH ₃ CH ₂ OH	H ₂ NCH ₂ COOH, Glycine?			4-2-1	ah
CH	CH ₂	C ₃ S	$c-C_3H_2$	CH ₃ NC	CH ₃ CHO	H_2C_6	HC ₇ N	CH ₃ CH ₂ CHO				MALL AR LULUTURING MAL
CH ⁺	HCN	C ₂ H ₂ *	CH ₂ CN	CH ₃ OH	CH ₃ NH ₂	CH ₂ OHCHO	C ₈ H				Ŭ,	יייגאן איזעראיין איזעראין אוויא אוויאן אווי
CN	HCO	NH ₃	CH4*	CH ₃ SH	c-C ₂ H ₄ O	<i>l</i> -HC ₆ H* (?)	70				-2 -	1.1 <mark>1</mark> 1.411
CO	HCO ⁺	HCCN	HC ₃ N	HC ₃ NH ⁺	H ₂ CCHOH	CH ₂ CHCHO (?)					-4	1 1
CO^+	HCS ⁺	HCNH ⁺	HC2NC	HC ₂ CHO							-6	¥
CP	HOC ⁺	HNCO	HCOOH	NH ₂ CHO							-8	3 _{1,2} - 3 _{0,3}
SiC	H ₂ O	HNCS	H ₂ CNH	C ₅ N								•
HC1	HOCO ⁺	$HOCO^+$	H ₂ C ₂ O	<i>l</i> -HC ₄ H* (?)			是 問売	問でのセラ	ルムス	の知る	<u></u>	են, Ոմնեւսը, –
KC1	HNC	H ₂ CO	H ₂ NCN	1-HC ₄ N			生间工	间しのイノ		ノ在九沢リ		ԽԱ. հԺԿԱՐՈՒՆՆԵ
NH	HNO	H ₂ CN	HNC ₃				-					- ԴԱԴԼ ⊩Խոչքվլ Բագլի/կէր™ս [
NO	MgCN	H ₂ CS	SiH4*					5	6		B 2 -4-	• • • • • • • • • • • • • • • • • • •
NS	MgNC	H_3O^+	H_2COH^+			,			6		r ^{_∠} -6−	רי ו י_ ⊢
NaC1	N_2H^+	c-SiC3						and the second s			-8	
OH	N ₂ O	CH ₃ *				(X	- 		-10-	² 2 ₁₁ - 2 ₀₂
PN	NaCN										-12	J 1,1 0,2
SO	OCS										20	
SO ⁺	SO ₂									~ ~	2.0	
SiN	c-SiC ₂					(C		0-	
SiO	CO ₂ *								<u> </u>			
SiS	NH ₂							Pronvlene o	vida		-20	· 1 / 1/ ^ · · _
CS	$H_{3}^{+}*$										-20 -	1. J Y [
HF	H_2D^+ ,						B.A. McGu	re et al, Science	e 352 (2016)	1449.	10	K .
	HD_2^+										-10-	1 _{1,0} = 1 _{0,1}
SH*	SiCN											
HD	AINC			れらの	有機分-	そは宇宙に	おける	命の記!	良とな	り得る	ó	50 100 150 200 250
FeO?	SiNC											V _{LSR} (km s ⁻¹)
O ₂ ?												

H. S. P. Mueller et al, J. Mol. Struc. 742 (2005) 215.

地球生命の対称性の破れの起原を宇宙に探る:光と物質、電磁場の相互作用

核融合炉ダイバータ領域における光とプラズマ(気体)との相互作用(光電離・励起等)を光と物質の相互作用として捉え、 光および電磁場中の荷電粒子が持つ運動量が物質にどのように転写されるかというテーマに核融合、放射光科学、アストロ バイオロジーの異分野融合型研究として取り組む.

。 ホモキラリティ:

アミノ酸には鏡像異性体(左手系L体と右手系D体)が存在するが、地球上の生命は基本的にL体 アミノ酸のみ、糖質はD体のみで構成されている。

→ 生命の起源の研究における重大な未解決問題

地球内説:非対称な鉱物表面への選択的な吸着、地球の磁場による磁気キラル二色性 **地球外説:星形成領域における円偏光による不斉分解**、磁場による磁気キラル二色性、超新星 からのスピン偏極した電子、スーパーフレアからのスピン偏極したミュオン等

(IMS Letters)

・有機分子イオンのラーマ運動と偏光(直線・円偏光)の向き ・ラーマ運動の向きと磁気キラル二色性

UVSOR-III アンジュレータビームラインBL1Uを用いたライマンα円偏光の生成とアミノ 酸試料への照射

- アンジュレータ光源からの121.6 nmを基本波とする円偏光は試料チャンバー上流に設置された金コートミラーで反射して高次光成分を取り除く.
- 試料チャンバーは入口にMgF2窓付きゲートバルブが取り付けられ(窓厚0.5 mm)、ビームラインとの真空遮断されている.
- 円偏光のビーム強度は試料チャンバーの下流側にあるフォトダイオードで遂次計測した.
- 試料表面でのビーム径~6mm. 試料チャンバーは10-3Paまで排気.

ライマンα光によるアミノ酸の光電離

140 nm以下の光では光電離によってアラニンの電離が起こる
 磁場と断片イオンによるラーマ運動が光学活性に与える影響に着目

Y. Pan+, Phys. Chem. Chem. Phys. (2009) vol.11 1189.

磁場印加用円偏光照射装置

ライマンα円偏光照射によって誘起される光学活性

楕円率 (CD) を吸光度で除して非対称性因子(Optical anisotropy factor, g)を評価した. (各条件で3 試料から平均値とエラーバー(95%信頼区間)を得た) Anisotropy factor g = $\frac{\Delta \varepsilon}{(\varepsilon_{(I-CPL)} + \varepsilon_{(r-CPL)})/2}$

- アラニンのラセミ体混合物にR-およびL-CPLを照射することにより、明確な光学活性が確認された.
- しかし、D-またはL-アラニン単体のスペクトルとは異なる.
 → CPL照射による光反応は、D-またはL-アラニンの単純な光分解ではなく、生体分子に別の構造変化をもたらしている.
- R-CPLは正の鏡像異性体過剰 (ee)を引き起こす: P. Modica 2014によるSOLEILの結果と一致するか?

Unpublished data

preliminary

C. Meinert+, Angew. Chem. Int. Ed. (2012) vol.51, 4484.

光学活性発現に対する磁場印加の効果

- 磁場の印加(+/-0.7T)によって光学活性に有意な違いが観測された:
 - 磁場印加によって非対称性因子(Optical anisotropy factor, g) が若干減少する
 - 磁場による変化はR-CPL照射でより顕著である(昨年度の傾向と類似)
- 磁場印加の効果は磁場の向き(+/-0.7T)には依存しない:
 - この結果は、磁気円二色性(MCD)や磁気キラル二色性(MChD)といった通常の磁気光学効果では説明できない.
 - *minary* 140 nm以下では光電離によってアラニンの電離が起こる

preliminary

- 磁場と断片イオンによるラーマ運動が光学活性に影響しているか?

Y. Pan+, Phys. Chem. Chem. Phys. (2009) vol.11 1189.

Unpublished data

3 samples are averaged for each case. Error bar is 95% confidence interval

気相(プラズマ)での実験への展開

- 核融合に関連が深い水素、He、Ar や有機分子は真空紫外光の エネルギー領域で電離・励起断面積が大きくなる.
- ガスセルを用いた光電離・光励起実験を準備中.

放射光による水素分子の振動準位の制御→非接触プラズマの再結合過程の制御

ー般共同研究「核融合炉ダイバー タプラズマ中の原子分子の量子制 御へ向けた実証実験の検討」 金安達夫(九州シンクロトロン光 研究センター)

Unpublished data

まとめ

1. プラズマの熱的不安定性についての天文学分野との共同研究

実験室プラズマ(核融合)と数値シミュレーション、天体観測(星間プラズマ、太陽コロナ) の比較を通して、熱的不安定性が駆動するプラズマの熱的非平衡状態、相転移現象、構造形成を 広いパラメータ空間で統合的に理解することを目指す.

2. 地球生命の対称性の破れの宇宙起源説の検証

核融合炉ダイバータ領域における光とプラズマ(気体)との相互作用(光電離・励起等)を光 と物質の相互作用として捉え、光および電磁場中の荷電粒子が持つ運動量が物質にどのように転 写されるかというテーマに核融合、放射光科学、アストロバイオロジーの異分野融合型研究とし て取り組む.