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1. Reactor technologies and design: required material properties

• Plasma-wall interaction conditions, key functions and properties

• Materials of interest

• The burning issue of tritium behavior

2. Plasma-facing materials in fusion reactors

• Evolution of surface conditions in realistic conditions in the WEST tokamak

• Understanding fundamental mechanisms: impact of He on W microstructure

3. Tritium interaction with materials: the TITANS project

• Enhancement of tritium permeation barriers and tritiated waste management 

• Tritium measurement and modelling

• Radiation protection, risk assessment and dosimetry studies following accidental exposure to 
tritiated dust in support to EU regulators (art. 31)

Outline
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▪ Confining the hot plasma for nuclear reactions to happen:

• Inertial confinement

• Magnetic confinement: tokamaks and stellarators

In tokamaks, magnetic confinement is not perfect:

▪ Particles (and energy) losses

▪ Intense plasma - wall interaction

➢ Production of particles (« dust »)

➢ Irradiation of plasma-facing materials (PFM)
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Achieving magnetic confinement in reactors: 
the tokamak concept

WEST

25 m3

➔ ITER: demonstrate scientific 

and technical feasibility of 

fusion as a source of energy 

+ tests of Breeding Blanket 

(tritium production)
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From the magnetic confinement to the 
first physical barrier in ITER

➢ The vacuum vessel: double actively cooled stainless steel wall

• 1019-1020 m-3 plasma densities

• Minimize impurities: low background pressure (~10-5Pa)

➢ First wall components: the first physical materials facing the plasma

▪ Exposed to drastic conditions:

▪ High thermal flux (stationnary and transients)

  ITER: 10-20 MW/m2 up to 60 MJ/m2 over a few ms

▪ Particle irradiation (D,T, He)

▪ Neutron irradiation

▪ Functions:

▪ Extract the heat from plasma 

▪ Control impurities and particles (He)

▪ Produce T

4
Courtesy R. Pitts

ITER

Plasma

Divertor

Manage the contact while minimizing the pollution 

of the plasma and the modification of materials
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Plasma-Wall interactions in Tokamaks

➢ Combination of several mechanisms

➢ Irradiations: 

▪ D/T 

▪ He

▪ 14 MeV neutrons

+ Conditioning (boronosation)

+ High temperatures (>500°C)

+ Drastic events: disruptions, ELMs, 

runaways electrons, arcs

5
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Materials in fusion reactors

6

DEMO first wall design

• Required properties:

➢ No activation or transmutation

➢ High electric conductivity

➢ Good thermomechanical behavior

➢ Low D/T trapping and permeation

➢ Low plasma pollution ➔ low erosion and/or plasma 

pollution

• Materials of interest:

• Facing the plasma: tungsten (W)

• Adaptative layer: Cu, CuCrZr

• Structural material: EUROfer97, stainless steel 

 + active cooling: heat sink (H2O)
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Tungsten as a Plasma-Facing Material

➢ W: used in JET, AUG, WEST, ITER

➔ intensive fluxes of He and H isotopes at high 

temperatures

➢ Impact of He irradiation at the surface:

▪ dislocation loops 

▪ bubbles

▪ W-fuzz

7

R. Sakamoto

W irradiated 
with 6.5x1019

H.m-2

W irradiated 
with 6.5x1019

He.m-2

<530ºC 

E < Edisp. min (538 eV)

He has a strong impact on the material.

These modifications can affect the trapping of hydrogen (T).
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Tritium: a key isotope 
for fusion devices operation and safety

▪ Radioactive hydrogen isotope: 3H (T)

3H ⟶ 3He+ + -1e
– + νe     

  (Emax = 18,6 keV - Emoy = 5,68 keV, t1/2 = 12,5 year)

• H: high mobility in the environment and materials (as gas, water or OBT)

• Very large re-circulation of tritium in the installation (tokamak, tritium plant, …)

➢ Impacts the power plant efficiency, operability, safety, dismantling 

and waste management

All fusion devices will be confronted with T handling and management:

➢ Fuel availability: 6Li + n ⟶ 3H + 4He      (Breeding Blanket)

➢ Safety requirements:
• Address the tritium retention  (max 700 g of tritium in ITER Vacuum Vessel)

• Control the permeation

• Limit the tritium releases from tritiated waste

He,  D,   T   
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• The burning issue of tritium behavior

2. Plasma-facing materials in fusion reactors

• Evolution of surface conditions in realistic conditions in the WEST tokamak
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Outline
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PLASMA FACING COMPONENTS IN WEST

Baffle
structure

Antenna

Limiter

Inboard limiter

(Anneaux de Garde)

In-vessel 
Protection

WEST Vacuum Chamber

Lower Divertor Target
(ITER-like technology) 

Upper Divertor Target

108 K          103 K

IR image of   

25 MW/m² 

HHF loading
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Divertor in next step fusion devices will handle 
unprecedented particle fluence

[R. Pitts, NME2019] WEST ready for phase 2 – summer 2021

[Loarte, ITER R&D needs, 2020]

 High priority research area for ITER : divertor lifetime appropriateness to 

allow operation until well into FPO with the 1st tungsten divertor

WEST : full W superconducting tokamak targeted at preparing ITER divertor operation 

 WEST operates with an ITER grade divertor ➔ long pulse capability

 “High Fluence” phase run at the end of the first experimental campaign of phase 2

 Objective : cumulate ITER relevant particle fluence and assess evolution of ITER 

grade divertor plasma operation

11



First-wall exposure in WEST: 
WHIrr sample holders

Far in the Scrape Of Layer

• Grazing field line

• Charge exchange area

• Deposition area

➢ The larger the poloidal angle, the 

further the sample is from the lower 

divertor.

➢ 4 locations: - HFS: Q3B, Q6A, PJ4

- LFS: PJ2

Goal: expose samples at first wall conditions for an easy 

access to each campaign impact on the surface and stucture 

of the material (EUROfer, W + various original surface 

conditions)
12



Exposure history throughout WEST phase 1

• Samples exposed during C1, C2, C3, C4 and C5

+ Cumulative exposure: C3+C4

➢ Focus on C3/C4 comparison to consider                                              

the impact on He plasma

• Operational conditions:
• C3 campaign (D campaign): 

➢ 3 boronizations 

➢ 2h D plasma

➢ 12 ITER-like PFUs in sector Q3B

• C4 campaign (D+He campaign): 
➢ 13 boronizations 

➢ 2h45 D plasma +0.5h He plasma 

➢ 14 ITER-like PFUs in sector Q3B

• Major visual changes from C3
• Shadowing of sample-holders: preferential 

incident angles for the deposition process

• Composition and variation of the deposited 

layer?
13



Impact of the campaign history on surface 
evolution 

+50° 0° -50° -70°

Q3B –

C3 only

Q3B –

C4 only 500 nm

• C3: layer of nanoparticles of metal oxide (WO3). The closer the deposit is to the divertor, the 

larger the particle size and the greater the surface coverage

• C4: boron layer except for -70° layer with large W nanoparticles. Low roughness for B layer on 

recrystallized W and tips along poloidal direction on industrial W (+50°). 14



C3 exposed W: Three layer of boron deposition 
interlayed with metal oxide particles 

SEM surface observation + TEM cross-section images and EDS quantitative elemental mapping

➢ Color variation of the deposit is associated with different thickness of B deposition layer and density of 

surface metal oxide particles, but the struture of the deposited layer is similar and present everywhere

➢ 3 B layers

➢ Deposition thickness is 

higher in Q3A and at 50°

angle

➢ Metal oxide layer 

(particles) is observed in 

the 2 B layer and at the 

surface

➢ Lesser oxygen is 

observed in B rich layers

15



C4 exposed W: a more complex     
composition of layers

➢ Different tendency of deposit thickness compared to C3, with a 

specific surfacic layer at the 70° position (i.e. closer to the divertor) 

composed of metallic particles

16

➢ Comparison between the 2 campaigns:

▪ Strong presence of B on the first wall after both C3 and C4

▪ Deposition layer: 

▪ Similar structure and elements
▪ Variation of boron and metal oxide particles 

▪ Profile of deposition layer 

▪ After C4 at -70° only (near divertor) metal oxide layer is 

thickest 
▪ Metal oxide layer (W nanoparticles) are observed (2 for 

C3 and 5 for C4) not directly linked with boronization

history
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Modulated heat and particle loads on the WEST 
divertor

Simulated heat load deposition (PFCflux code)

Arrays of Langmuir probes

Shadowing by the toroidal bevel

 WEST divertor heat/particle load pattern modulated by ripple

 Toroidal bevel to protect leading edge (ITER) : local monoblock shadowing

 High fluence campaign conditions: 
▪ ~ 380 repetitive shots run for 1 month, cumulating ~3 hours of plasma / 30 GJ of energy

▪ ITER relevant fluence reached (~2 PFPO shots) : ~5 1026 D/m2
17
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UFO hampered the High Fluence campaign

UFOs

Divertor HFS = thick deposits

 3 classes of UFO defined : 
- small impact (~80%) : plasma survives w/o subsequent issues

- medium impact (~17%) : drives plasma into “cold branch” 

regime prone to MHD ➔ disruption > 200 ms, up to several 

seconds later

- large impact  (<3%): leads to disruption within ~200 ms

 UFO analysis : peak > 200 kW on Prad from bolometry (+ 

distinction from MHD crash) ➔ database of ~ 700 UFO

 UFO detected with IR originate mostly from HFS 

(thick deposits area)

18
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Complex erosion / deposition divertor pattern

ISP

OSP

Shadowing (bevel)

Shadowing (bevel)

Thick deposits HFS

 Divertor : “usual” complex erosion / deposition pattern, as observed in phase 1

 New features : impact of toroidal bevel

M. Diez, NME 2023

Phase 1 erosion / deposition pattern

19
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Deposits in shadowed area of beveled monoblocks

 New : “thin foil like” deposits in area shadowed by the toroidal bevels (and in gaps ?), both on HFS/LFS

 These deposits tend to delaminate easily (exposure to air ?) ≠ thick adherent deposits on HFS

HFS LFS

Net erosion 

zoneThick deposits

PFU 268

MB27 MB28
MB29

MB30

MB31

ISP (MB16)

OSP (MB25)

 Note that these “bevel deposits” are not necessarily the main 

cause for UFOs : UFOs detected by IR originate mostly from 

HFS, while “bevel deposits” are present on both HFS/LFS

20
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Complex deposited layer structure

 HFS thick deposited layers collected on PFU exposed to 

C5-C7 

 Up to 50 m deposited layers

 Complex structure : mix of high Z / low Z layers, 

delamination, impact of off normal events (molten 
material) ?

 High fluence : mainly W dense layers ?

C
5
 fro

m
 C

7
 (h

ig
h

 flu
e

n
c

e
)

W dense 

layers : high 
fluence ?

B rich

Impact of off normal 

event ? 

B rich

W O BPFU#10, MB11

 Enhanced dust collection after C7 (quantity and 

dust size > 100 microns)

 Partial divertor cleaning performed after C7 (HFS 

deposits) : adhesive tape used 

 R&D ongoing to improve the divertor cleaning method 

(will be required again after the spring 2024 campaign)

21



Disposition : Titre et contenu

22

Understanding fundamental mechanisms at stake:
the insight of nanoscience techniques

[1] M. Ialovega et al., Nucl. Fusion 62, 126022 (2022).

• He bubbles form in W under tokamak-relevant conditions:

➢ Post-mortem characterization via Transmission Electron Microscopy 

(FIB-TEM)

➢ Competing simultaneous phenomena

➢ Crucial impact temperature 

➔ Initial stages and kinetics are out of reach

Simplify the system to allow experimental 

characterization of the fundamental 

mechanisms for He irradiation of W

Extrapolate W 

behavior in ITER

Lab. experiments

Parametric study

Fusion devices

In situ exposure

Modelling

(MHIMS, FESTIM…)
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➢ Grazing-incidence Small Angle X-ray Scattering (GISAXS):
non destructive technique using a photons probe to study nanostructure 
materials, combining the length scales of small-angle scattering and surface 
sensitivity of grazing incidence diffraction.

Ideal complement for TEM: determines average particle 
properties on a larger scale

Simultaneous He irradiation and GISAXS measurement at BM 32 
at the European Synchrotron Radiation Facility (ESRF).

➢ Cleaning and surface roughness minimization: 

▪ Single crystalline W 

▪ 15 min Oxygen annealing 1200 K

▪ 40 s high temperature flash (2200 K) 

under vacuum

23

Coupling Grazing Incidence Small X-ray Scattering 
and He implantation in « ideal » W
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➢ Analysis of GISAXS data allow tracking of the bubble growth

24

Identification of migration coalescence mechanism 
for He bubbles

He (2 keV) at 600°C, flux = 2,40x1017 m-2s-1, 

fluence = 1,00x1022 m-2 

➢ In the literature, several growth 

mechanisms: static mechanism (Oswald 

ripening) and dynamic mechanism 

(Migration and coalescence) 

+ Coalesced bubbles 

seen by post-

implantation FIB-TEM
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➢ Preferential faceting appears at high temperatures during or 
after He irradiation

➢  Enhanced during annealing up to 1500°C

➢ Good agreement with TEM 

 Minimization of surface energy (Wulf theorem)

25

Enhanced preferential facetting at high 
temperatures

Ultra high vacuum annealing up to 1500°C
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PRISTINE W: Major increase of  T trapping with 
PRE EXISTING defects

Major increase of T 

trapping with defects in 

W structure, desorbing 

only at high temperature

W+T HT and HTO 
desorption at 20°C

HT and HTO 

desorption at 

800°C

T 
20°C

T 
800°C

T bulk

Sample 

dissolution
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What is the impact of He 

triggered damages to the W 

microstructure?
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Plasma-facing materials in fusion devices:
take-home messages

➢ Plasma-facing materials (W) are submitted to extreme conditions in 

tokamaks

• Strong surface evolution observed after in situ exposure: 

complex deposit and erosion patterns

❖ Crucial for T inventory, trapping and permeation

• Multi-scale analysis needed to guarantee the materials integrity 

and properties conservation

• Simultaneous phenomena integrated over a whole campaign 
complexifies identification of respective impacts

➢ Coupling to laboratory studies is crucial to understand fundamental mechanisms at stake

• Simplified systems to isolate respective contributions

• Expansion of the experimental range at reach

❖ Impact of pre existing defects, neutron irradiation, higher fluences…

+ Modelling efforts on irradiation effects (neutrons) and multi-isotope simulations underway
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2. Plasma-facing materials in fusion reactors

• Evolution of surface conditions in realistic conditions in the WEST tokamak

• Understanding fundamental mechanisms: impact of He on W microstructure

3. Tritium interaction with materials: the TITANS project

• Enhancement of tritium permeation barriers and tritiated waste management 

• Tritium measurement and modelling
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tritiated dust in support to EU regulators (art. 31)

Outline
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TITANS: Tritium Impact and Transfer in Advanced 
Nuclear reactorS

➢ 21 partners, 3 years – EU Horizon Europe 2021-2027

➢ Goal: fusion/fission cross cutting multidisciplinary project to provide suitable                                              
innovative answers to the major tritium challenges

➢ Release mitigation 

➢ Minimization of sources

+ Improve knowledge on the health effects of T ➔ Support to radiation protection authorities

Throughout the whole T cycle

TITANS

➔Handle, control & protect



Disposition : Sommaire light

Astuce :Ce sommaire est sur deux colonnes, pour passer sur une colonne : Clic droit sur la zone de texte + « Format de la forme » / « Options de texte » / « Colonnes » = 1 

1. WP1: Enhancement of tritium permeation barriers and tritiated

waste management (KIT)

• Upgrade of tritium permeation barrier (treatment of surfaces)

• Binder matrix to immobilize tritiated metallic dust and minimize the tritium release

• Compare methods and procedures of decommissioning tritiated components/systems

• Design of a mobile water detritiation facility

TITANS: HANDLE

30



Disposition : Titre et contenu

• H/D/T exposure: H2/D2 OR T2 gas loading

> no damage creation + trap saturation

• Trapping parameters: TDS, T desorption (t, temperature)

+ NRA (depth profiling)

31

Permeation experimental methods

Soluted T

Dissociation 
& Chimisorption

Trapped T

• Transport parameters: measure the permeation timelag and permeation flux 

• H2/D2 permeation in Hypertomate:

➢ diffusivity, solubility and 

permeability at temperatures

from 100 to 550°C

• T2 permeation in WAPITI

➢ diffusivity, solubility and permeability at RT with/without water

➔ Longer permeation time but complementary with 

Hypertomate conditions
[E. Bernard JNM 2015]

[F. Montupet-Leblond NME 2021]
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• Hydrogen gas-driven permeation experiments 

were conducted on Eurofer97

• Good agreement with existing studies

• Diffusivity is not purely interstitial

➢ influence of trapping sites on permeation 

in the 200°C to 400°C temperature range

32

Hydrogen isotopes transport & trapping in Eurofer97

[F. Montupet-Leblond Nuc. Fus. 2022]
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• Additional TDS experiments to investigate trapping sites 

present:

• 3 trapping sites are needed to adequately model the 
observed behavior

more than one trapping site in Eurofer97 invalidates 

the hypotheses required for the effective diffusivity to 
be valid. 

➔ Underestimation of retention and of the time need 

for tritium to reach the cooling system

33

Hydrogen isotopes transport & trapping in Eurofer97
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• Simulation of the T retention fields in a 2D section of a WCLL Breeding blanket 
with FESTIM:

➢ Adding the 2 high detrapping energy traps leads to a 18-fold increase 
of the retention: 

- 1-trap model: 1.72 · 1020 T.m−1 (0.86 mg/m of WCLL) 

- 3-traps model: 3.12 · 1021 T.m−1(15.5 mg/m of WCLL)

+ permeation through the pipe is done in 29 s with the 1-trap model vs 3.8 
hours with 3-traps model

➔ Considering only the low detrapping energy traps significantly 
underestimates retention

34

Hydrogen isotopes transport & trapping in Eurofer97

[J. Dark Nuc. Fus. 2021]
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1. WP1: Enhancement of tritium permeation barriers and tritiated

waste management (KIT)

• Upgrade of tritium permeation barrier (treatment of surfaces)

• Binder matrix to immobilize tritiated metallic dust and minimize the tritium release

• Compare methods and procedures of decommissioning tritiated components/systems

• Design of a mobile water detritiation facility

TITANS: HANDLE

35
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Decommissioning and treatment of tritiated
components

➢ SCK CEN Tritium laboratory:

➢ Commissionned in 1975

➢ 30 years operation 

➢ Max inventory: 37 TBq

➢ Low T release limit: intensive decontamination labor

➢ Significative impact of the approach

➢ Characterisation of tritium contaminated metal: 

• Large range of activity measured: 6 to180 kBq/dm²

• Historical data: ~ 4 GBq/kg 

➔20 times lower than measured

“Idealistic” “Pragmatic”

Comp. nucl. 

Waste

4.0 m³ 5.7 m³

Free rel. metals 79 % (weight) 27 % (parts)

Free rel. other

mat. 

75 % (weight) 65 % (parts)

Man hours (h) 4000 h 1300 h

Time span 

(years)

2.75 y 1 y
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Study of ³H release during various cold 
cutting techniques

➢ Pneumatic cutter: up to 240 kBq/m³

➢ Sawing : up to 70 kBq/m³

➢ Milling machine: up to 50 kBq/m³

➢ Drilling: up to 40 kBq/m³

➢ Background-signal 20 ± 10 kBq/m³ 

+ Advantages:

• no contaminated oil (dry) 

• less tritium emission

− Disadvantages:

− Dry friction heating causes material hardening 

➔ time consuming + wear of cutting materials

Mobilizable dust created
Time
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1. WP1: Enhancement of tritium permeation barriers and 

tritiated waste management (KIT)

2. WP2: Tritium measurement and modelling (CIEMAT)

• Tritium measurement in solid, dust and aerosol

• Autoradiography

• Nuclear reaction analysis

• Nuclear Magnetic resonance

• Tritium inventory in aerosol

• Tritium measurement in liquid metal

• Tritium transport code from system to detail level in fission and fusion devices

TITANS: HANDLE, CONTROL

38
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Benchmark study and validation of fusionfission
system level codes: KUTIM-EcosimPro

➢ Benchmarking of 2 system codes:

➢ EcosimPro Tritium Transport Libraries (fusion)

➢ KUTIM (fission)

❖ Influence of temperature

❖ Impact of the H source term (secondary circuit)

❖ Impact of Na flowrate in cold traps

+ Consequences on overall permeation transfers

➢ Transfer fluxes in cold traps

• Different approaches applying temperature to calculate 

Na density

► Na density equation calculated with corrected 
temperature

• Different modelling approaches to simulate the cold trap 
component in the process material balance
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Benchmark study and validation of fusion/fission 
system level codes: KUTIM vs EcosimPro

➔ Permeation:

• EcosimPro: permeability is the product of solubility and 

diffusivity

• KUTIM: permeation is based on “permeability coefficient” 𝑷𝒆𝑿
(kgNa.m

-1.s-1) 

➔ 0.05 % difference for the global gaseous release analysis

➔Sensitivity analysis (temperature, H source, flow rate 

to cold Trap)

➔ Implement validation scenario for liquid sodium loop 

(Superfennec training loop at CEA)
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1. WP1: Enhancement of tritium permeation barriers 

and tritiated waste management (KIT)

2. WP2: Tritium measurement and modelling (CIEMAT)

3. WP3: Radiation protection, risk assessment and 

dosimetry studies following accidental exposure to 

tritiated dust (CEA)

• Dispersion and deposition of aerosols on vegetation 

• Establish a dose-effect relationship (essential to radiation risk 

assessment) in the case of:

• Contamination of skin

• Contamination of human lung macrophages

• Contamination of a population of mussels

TITANS: HANDLE, CONTROL & PROTECT

41

Generation of 

particles

Filters and 

substrates

Experimental set-up
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Study of tritium particles biokinetic by the skin route: 
a fast track to T bio accumulation?

Evaluation of tritium and metals’ permeation through intact and damaged human skin following exposure to tritiated particles 

(OECD Guidelines and Regul Toxicol Pharmacol. 2020 Nov, 117:104752)
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Skin decontamination can increase steel particle 
element permeation through the skin

➢ Only decontaminated and broken skin present an 

increase of metal permeation, with different 

profiles:

• For broken skins: permeation after 8 h

• Decontaminated skins using soap: caused 

by surfactant action of soaps on stratum 

corneum integrity?

0

50

100

150

200

250

300

350

0 5 10 15 20 25

n
g

/c
m

²

time (h)

Nickel skin permeation

Blank

Intact

Damaged

decontaminated

Broken



Disposition : Titre et contenu

44

TITANS project:
take-home messages

➢ TITANS built on strong interaction between fusion/fission experts 

• All the major tritium EU experts/institutions involved

• All results, workshop, news accessible: https://titans-project.eu/

➔ newsletter available!

❖ Develop and test innovative technologies to measure T in materials and 

mitigate T release in the environment
• Learn from decommissioning activities and prepare waste management

• Develop T measurements techniques 

• Develop and upgrade experimental benches for T testing

• Validate and benchmark modelling tools

❖ Provide inputs to ICRP biokinetic models and dose coefficients for 

radioprotection guidelines
• Understand potential dispersion routes

• Evaluate T contamination routes (skin permeation, food chain integration)

• Estimate geno and cyto-toxic impact

https://titans-project.eu/third-tritium-school/
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