ユニット成果報告会, 2025年5月28-29日

# 核融合マグネットの水素冷却による 冷却安定化

Cryostable Fusion Magnets Cooled with Hydrogen

(NIFS)今川信作,濱口真司 (大阪大)岩本晃史 (関西学院大)大屋正義 (京都大)白井康之 (JAXA)小林弘明



### 研究の背景

高温超伝導(HTS)マグネットを採用して運転温度を4 Kから 20 Kに高めると、冷却に要する<u>電力が1/5以下に低減</u>され、 また、ヘリウムの代わりに水素を利用できるため<u>資源上の利</u> 点も大きい。一方、大型超伝導コイルは、<u>安定な運転が必須</u> で<u>交換は困難</u>であることから、水素(H<sub>2</sub>)の優れた冷却能力と 20Kにおける銅の低抵抗率を利用し、「冷却安定な」HTSマグ ネットの設計基準を確立を目指す。

HTSの「冷却安定」とは(提案)

- (1)局所であれば想定値(例えば/cが 1/2)まで劣化しても熱暴走しない
  (発熱部が拡大しない)。
- (2) 電圧/温度が検出可能なレベルに 上昇するまで熱暴走しない。(定格電 流が68 kAの場合, 0.1 V の電圧発生時 の発熱は6.8 kW < 核発熱)





ITER magnets (https://www.iter.org/mach/magnets)



| I <sub>op</sub> : 68 kA   |  |
|---------------------------|--|
| B <sub>max</sub> : 11.8 T |  |

核発熱:10.9 kW

**ITER-TF design**  $j_{Cu} = 133 \text{ A/mm}^2$ 

大型コイルでは遮断時電圧の制約から遮断時定数が 長くなり、温度上昇の抑制のため多くの安定化銅が必 要→冷却安定な条件成立の可能性



[1] Presented by T. Mulder at WAMHTS-4, Barcelona, Spain, February 16, 2017



## He冷却とH<sub>2</sub>冷却の比較 (HTS-CIC Type (B))

| Type (B) (j <sub>Cu</sub> = <mark>62.5</mark> A/mm², <i>Tcs</i> = 31 K at 83 kA, 13.9 T) |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |  |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| H <sub>2</sub> at 21 K                                                                   | SHe at 4.4 K                                                                                                                                                                                                                       | Gaseous He at 21 K                                                                                                                                                                                                                                                                 |  |
| 10 kW                                                                                    | ←                                                                                                                                                                                                                                  | $\leftarrow$                                                                                                                                                                                                                                                                       |  |
| 800 m                                                                                    | ←                                                                                                                                                                                                                                  | $\leftarrow$                                                                                                                                                                                                                                                                       |  |
| 1.5 / 1.4 MPa                                                                            | 1.0 /0.9 MPa                                                                                                                                                                                                                       | 1.5 / 1.4 MPa                                                                                                                                                                                                                                                                      |  |
| 21.0 / 21.84 K                                                                           | 4.4 / 5.83 K                                                                                                                                                                                                                       | 21.0 / <mark>23.21</mark> K                                                                                                                                                                                                                                                        |  |
| 5.18 g/s                                                                                 | 8.61 g/s                                                                                                                                                                                                                           | 3.89 g/s                                                                                                                                                                                                                                                                           |  |
| <mark>9.45</mark> J/g-K                                                                  | <mark>3.88</mark> J/g-K                                                                                                                                                                                                            | 5.6 J/g-K                                                                                                                                                                                                                                                                          |  |
| 71.0 kg/m <sup>3</sup>                                                                   | 143 kg/m <sup>3</sup>                                                                                                                                                                                                              | 32.9 kg/m <sup>3</sup>                                                                                                                                                                                                                                                             |  |
| <mark>12.8</mark> μPa s                                                                  | 4.3 μPa s                                                                                                                                                                                                                          | 3.7 μPa s                                                                                                                                                                                                                                                                          |  |
| 0.0998 W/m-K                                                                             | 0.0245 W/m-K                                                                                                                                                                                                                       | 0.0262 W/m-K                                                                                                                                                                                                                                                                       |  |
| 870 W/m²-K                                                                               | 378 W/m <sup>2</sup> -K                                                                                                                                                                                                            | 329 W/m <sup>2</sup> -K                                                                                                                                                                                                                                                            |  |
| 31.7 K - Tcs                                                                             | 27.8 K ≩ <i>T</i> cs                                                                                                                                                                                                               | Thermal runaway                                                                                                                                                                                                                                                                    |  |
|                                                                                          | Type (B) $(j_{Cu} = 6$<br>H <sub>2</sub> at 21 K<br>10 kW<br>800 m<br>1.5 / 1.4 MPa<br>21.0 / 21.84 K<br>5.18 g/s<br>9.45 J/g-K<br>71.0 kg/m <sup>3</sup><br>12.8 µPa s<br>0.0998 W/m-K<br>870 W/m <sup>2</sup> -K<br>31.7 K > Tcs | Type (B) ( $j_{Cu}$ = 62.5 A/mm², Tcs = 31 K aH₂ at 21 KSHe at 4.4 K10 kW←800 m←1.5 / 1.4 MPa1.0 / 0.9 MPa21.0 / 21.84 K4.4 / 5.83 K5.18 g/s8.61 g/s9.45 J/g-K3.88 J/g-K71.0 kg/m³143 kg/m³12.8 μPa s4.3 μPa s0.0998 W/m-K0.0245 W/m-K870 W/m²-K378 W/m²-K31.7 K ~ Tcs27.8 K ≤ Tcs |  |

(\*1) All strands and Cu wires are assumed at the same temperature.

「 Isc=0でも「Tcs以下」を満足

- ◆21 Kの超臨界圧H<sub>2</sub>と4.4 Kの超臨界圧Heは,共に優れた冷媒であり,「<u>冷却安定な」設</u> <u>計が可能</u>。21 KのHeは密度が低いため不適。
- ◆ H<sub>2</sub>の熱伝導率はHeの4倍であるため、21 KのH<sub>2</sub>の熱伝達係数は 4 KのHeの2倍以上。 5

# Type (A), (B), (C)の比較

| Conductor                                        | Type (A) (14Lx18)      | Type (B) (25Lx9)       | Type (C) (11Lx25)                   |
|--------------------------------------------------|------------------------|------------------------|-------------------------------------|
| Critical current at 13.9 T                       | 108 kA                 | 111 kA                 | 118 kA                              |
| Current sharing temperature, <i>Tcs</i> at 83 kA | 30.3 K                 | 31.0 K                 | 32.7 K                              |
| Copper current density, <i>j</i> <sub>Cu</sub>   | 80.2 A/mm <sup>2</sup> | 62.5 A/mm <sup>2</sup> | 71.9 A/mm <sup>2</sup>              |
| Perimeter of bundle section                      | 1025 mm                | 648 mm                 | 1055 mm                             |
| Heat input / Length of a cooling path            | 10 kW / 800 m          | $\leftarrow$           | $\leftarrow$                        |
| Inlet / outlet pressure                          | 1.5 / 1.4 MPa          | $\leftarrow$           | $\leftarrow$                        |
| Inlet / outlet temperature                       | 21.0 / 21.50 K         | 21.0 / 21.84 K         | 21.0 / 21.76 K                      |
| Mass flow per path                               | 8.73 g/s               | 5.18 g/s               | 5.76 g/s                            |
| Heat transfer coe. at bundle section             | 756 W/m²-K             | 870 W/m²-K             | 815 W/m²-K                          |
| Conductor temperature at $I_{Cu}/I = 1.0$        | 30.7 K (> <i>Tcs</i> ) | 31.7 K (> <i>Tcs</i> ) | <mark>28.9</mark> K (< <i>Tcs</i> ) |
| Conductor temperature at $I_{Cu}/I = 0.9$        | 29.7 K                 | 30.5 K                 | 28.1 K                              |

◆ Type (C) が最も「冷却安定」

 ◆ Type (B) は構成がシンプルだが、濡れ 面積が狭く、また、REBCO素線あたり の電流値が高いため、冷却は不利。







#### 導体概念設計のまとめ

◆21 Kの超臨界圧H<sub>2</sub>でも4.4 K超臨界圧Heでも, Nb<sub>3</sub>Sn-CIC導体と同じケー ブルサイズであれば, <u>全電流が安定化銅に流れる</u>場合でも「劣化部導体温 度く分流開始温度」を満足することが期待できる。

◆圧力損失0.1 MPaの条件で、21 K, 1.5 MPaのH₂は、4.4 K, 1.0 MPaのHe と比べて熱伝達係数が2倍であり、冷却安定な導体設計に適している。

◆HTS-CIC導体は, <u>濡れ面積が広い</u>方が冷却安定性が高くなるが, 電磁力に 対する<u>強度が重要課題</u>である。→ 実使用条件の導体試験が必要である。

より高性能・低コスト化のためには、<u>劣化部のHTSが分担できる電流値</u>を明ら かにすることが必要

(1) 劣化したHTSケーブルの熱暴走メカニズムを明らかにする (2) HTS集合導体の性能低下を予測あるいは管理可能とする



液水実験には、JAXA能代 ロケット実験場の試験設備 を利用





これまでに(2023-2024年)3種類の3ターンコイル試験体(REBCO線のみ・カプトン絶縁あり, REBCO線と銅テープを共巻・カプトン絶縁ありとなし)に液体水素中で最大400 Aまで通電して熱暴走挙動を調べた。





- ◆ 冷却面にカプトン絶縁ありの場合, 温度上昇により, 限界熱流束の1/2程度で熱暴走 → 直接冷却が有効
  ◆ 曲げ加工により臨界電流 *lc*を1/15以下に低下させる とn値(E = E<sub>0</sub>(*l*/*lc*)<sup>n</sup>)が3-6に低下し, 低下した*lc*の10 倍程度まで熱暴走しない。
- ◆ REBCO線に共巻した銅テープは, 接触抵抗が高いと 熱暴走開始電流の向上にあまり効果がない。



#### HTSマグネットの冷却安定化研究のまとめ

- ♦Nb<sub>3</sub>Sn-CIC導体と同程度の電流密度であれば、局所であれば大幅な性能 低下を許容できる設計が可能と期待できる。
- ◆冷却安定性を高めるためには,<u>線材の直接冷却</u>が必須である。超臨界圧 H2冷却の強制冷却が第一候補であるが,液体水素の大きな潜熱を利用す る浸漬冷却方式も検討の余地がある。

#### <今後の課題>

- ◆合理的な導体設計のためには、<u>HTS集合導体の劣化を予測・管理</u>する技術が必要である。臨界電流/cの劣化がn値の低下を伴うのであれば、電圧発生が緩やかになり、熱暴走が生じ難くなる。 → 体系的な研究が必要
- ◆集合導体では<u>線材間の転流や安定化材への分流</u>が冷却安定性に影響する。また、電磁力と熱ひずみによるHTS線材の性能低下が重要課題である。→ 実規模の導体試験が必須