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Key goal: cosmic star formation history

» Observational analysis of
gravitational lensing (HsT, HsC)
(Kobayashi+2015)

Hubble Space Telescope (NASA Subaru telescope (NAOJ)
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Key goal: cosmic star formation history |
Observed protoplanetary disks

Observed molecular cloud structures » Semi-analytic BALMA observatory
E molecular cloud evolution 4 —
(Kobayashi+2017, 2018)
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Key goal: cosmic star formation history N

Observed magnetlc field and veloc;|ty structures in Taurus cloud

» Molecular cloud formation

simulation / synthetic obs.
(Kobayashi+2020, 2022, 2023)
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Key goal: cosmic star formation history R 8255
» Observational analysis of » Semi-analytic » Molecular cloud formation
gravitational lensing (HsT, Hsc) molecular cloud evolution simulation / synthetic obs.
(Kobayashi+2015) (Kobayashi+2017, 2018) (Kobayashi+2020, 2022, 2023)
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Outline

» Background
a Hierarchical structure of the Universe
0 Star formation efficiency problem

» Thermal instability
0 Thermal sates in the interstellar plasma
a The interstellar plasma is filled with “bubbles”

» Colliding Hi flow simulations
0 Shear flows suppress the growth of thermal instability
0 Impurity fraction (= different epoch of the Universe)
0 Comparison with thermal instability in fusion plasma (LHD)

» Solar system formation with short-lived radio nuclei?



Background

1) Hierarchical structure 2) Star formation efficiency problem

of the Universe (Bigiel+ 2008; see also Kennicutt 1998)
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Hierarchical structure of the Universe

Simulate cosmological (The) most ancient A galaxy = 101 stars
large-scale structures galaxies (JWST telescope)

N llustris-TNG project

_ NGC 1309 galaxy (Hubble
: ~ =130 Giﬂ’ a‘go g Space Telescope project) |
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Diffuse atomic hydrogen gas
J Molecular clouds

* Limited mass condense into
molecular clouds

« Stars are born

in molecular clouds

Declination (J2000)

- LMC (Fukui et al., 1999)
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Right Ascension (J2000)

HI column density 102! [atm cm™2]



Star formation efficiency problem (& 4 F$h 2= 5 78)

One of the largest open questions in astrophysics

. T(,B'.g'f'iz.of)?; see also Kennicult 1998) (1) Theory: Expected contraction timescale

A =

[ . M51 (Kennicutt et al. 07) — Apertu ] .

[ 4451 (Schster st o, 07), NGOAT, 4 NGCS055:(Wer wasingn of a molecular cloud due to self-gravity.
oL NGC6946(C sthwaite & Turner 07) — Rodial Profile : I

| * Non-starburst Spwrols (Kennicult 98) — Global - 3
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Q SR g (2) Observation: (left panel)

] Cloud mass / observed new born stars = 10° year

Stars form at only < 1 % efficiency. Why?

o Turbulence & magnetic fields counteract
self-gravitational contraction.

T - — o From where did turbulence & magnetic
log (Clouds available to form stars [Mg kpc2)) fields of molecular clouds originate?

log (Observed Star Formation Rate [Mg yr' kpc2))

Stars & planets

Phase-transition dynamicsE= Turbulence & magnetic fields
driven by “thermal instability” v.s. self-gravity




Plasma parameters

Interstellar plasma
W L MC (Fukui et al., 1999)

HI column density 102! [atm cm"

ny = 1093 cm=

T=10"*K

B=10%G (=10°T)

lonization frac.: n,/ny = 10 ~ 10"

Impurity frac.: no/ny < 104
(almost in the form of C+)

- VERY weakly ionized
- Typically high plasma g

10

Fusion plasma

ny =103 cm=

T=104"K
B=10*G(>=1T)
lonization frac.: n,/ny > 10"
Impurity frac.: no/ny ~ 102

- Highly ionized
- Low plasma
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Thermal instability
ﬁ Phase diagram \ /2) Ubiquitous "bubble” structu@

(Kobayashi+ 2023)
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The thermal states of the ISM @ present-day

log (P/kp [K cm3])

Condition for the thermal instability (100K < T < 6000K)

12

(e.g., Field 1965, McKee &
Ostriker 1977, Wolfire+ 1995)

The “multi-phase” ISM and the thermal instability

Heating: photo-electric
Coolmg Lya OI CII CO

Inoue & Inutsuka 2012

log (n [cm3])

(Run-away cooling e.g., Schwarz 1972,
Balbus 1995; c.f., Field 1965)

(25 <

Typical growing scale: Cs x cooling time
=0.01 - 0.1 pc << Molecular cloud

1pc=3x10'% cm
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@ Warm Neutral Medium (WNM)

HI gas, 10->% cm-3, 10* K
Most volume in the MW disk

@ Cold Neutral Medium (CNM)
HI gas, 102 cm3, 102 K

@Molecular Gas (MCs)

H, gas, >10? cm, <10% K, progenitor of stars

Cooling process

o)\
‘\a’&\o
Collisional exciation ‘aed‘ad
\Q
0 @ [Cll] 158 um (= 91K)
(J=3/2 — 1/2)

1522s22p' 2P° A ~2Xx107° s
« 158 um radiates far away = cooling
* Dominant at T < 6000 K

* His the most abundance
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Thermal instability

v=Cp/Cv

Basmg equations - pma(y = 1) po <%)

8_15 + V,(pv;) =0, s o/

a(pvz) A (7 _ 1),l“nH (%)

o V;(Péij + pvjv;) =0, ! kpcs or/,
De I kpes po 1
E + V; [(6+P>5ij1)j] "y —1pmyk
=V, [k(T)VT| — pL(T, 2) da = ay exp(ot + ikx) (for rho, T, v)
Thermal conduction Net cooling

Dispersion relation with net cooling + thermal conductivity

l{?2 3k2 k2
0+ o%cs [ kr— | + oc?k?® + kr —k,+-— =0
[ g ks

Growth rate (up to its first order)

k-range for growing

k=0 k, = \/ ko (K,
o= (Cs/v)(k, — kr) = 2 " CdolingTéhgth ~ ™ Conduction Skale
Maximum growth «i’ 1L i
Km = \/% % 0 k--—"" \ |
0.2pc @Zo - 1.0 pc @ 0.2 Ze g \
-g -1 | (Koyama 2000) ‘.‘ .
E> Convergence requires <~0.02 pc resol. 5 5 i

(Kobayashi+2020) 0001 001 01 1 10 100

wave number k / 2z [pc1]



The thermal states of the ISM @ present-day

log (P/kp [K cm3])

Condition for the thermal instability (100K < T < 6000K)

14

(e.g., Field 1965, McKee &
Ostriker 1977, Wolfire+ 1995)

The “multi-phase” ISM and the thermal instability

Heating: photo-electric
Cooling: Lya, OlI, CII, CO

log (n [cm3])

(Run-away cooling e.g., Schwarz 1972,
Balbus 1995; c.f., Field 1965)
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Typical growing scale: Cs x cooling time
=0.01 - 0.1 pc << Molecular cloud
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v ALEEE R 012 @ Warm Neutral Medium (WNM)

HI gas, 1020 cm3, 104 K
Most volume in the MW disk

@ Cold Neutral Medium (CNM)

HI gas, 102 cm3, 102 K

@Molecular Gas (MCs)

H, gas, >10? cm, <10% K, progenitor of stars

Shocks compress WNM to destabilize

(1) WNM
1
[ Thermal instability ]

\{

@ CNM/ @ Molecular cloud




15

The ISM is ubiquitously “bubbly” (= bubble-dominated)

Courtesy of Hidetoshi Sano (Gifu Univ.)

Wi e . TR RN 'f . JCMT TIRAET A A MRAFE
(seé Lara-Lopez et al, 2023, Watkins#t al, 2023)
, Pl Lo . B - » SNR W28
: ? S ; ; o . ‘Cv:qrﬂe-_col‘l.gpse‘:/_ Mixgg mquDplogy
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James Clerk Maxwaell Telescope
% East Asian Observatory
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Almost all known star
forming regions in the Solar
neighborhood is on the
surface of the Local
Bubble! (~14 supernovae?)
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c.f., Koyama & Inutsuka 2000, 2002

HI gas accumulation by supersonic flows it v s

Audit & Hennebelle 2005, 2008,

Heitsch 2005,
Vazquez-Semadeni 2006, 2007, etc.)

» Molecular cloud formation is regulated by “B-fields”

Red lines: B-fields (lwasaki+ 2019; e.g., Inoue & Inutsuka 2009)

36 degrees (time = 5 Myr)

3 degrees (time = 5 Myr) 11 degrees (time = 5 Myr)

B2 ) o (e )( (no) ]‘/2( 17 ) By )
2L V2 — singl ~ 03 ~
gr 100 01 N5em2) \20kms ' )N\5 4G 15 deg

I Present-day: Cloud formation / growth after “multiple” compression.
PaSt Universe: ? (Inutsuka et al. 2015)
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Galactic Archiology: SF history of the MW galaxy

Gaia data: age of stars in the Solar neighborhood < 2 kpc
o In the past 12 Gyr, stars were bornin 0.1 Z; - 1.0 Z, (Ze: Solar value)

(c.f., Ivezic 2008, Péroux & Howk 2020, Sahlholdt 202T; Huang 2022)

L (Revised from Delgado o - 05
| Mena 2019) [

A, s - - =Tr e '10
A it A
N o m
o &
... " * T A5
12 10 4 2 0

105?
=
g
Sl T | o Thermally stable branches and unstable
g \ regions exist, but the evolution timescale
Q.‘ 1 = = =
Lo? (Kobayashi+ 2023) becomes longer in lower metallicity

o e environments (= lower impurity fraction).

n [cm ™3]
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Colliding HI Flows

ﬁ Shock-compressed cloud formati(m ﬁf ransition of star formation

Density
0.1000 1.000 10.00 100.

W

1000.

10.0 100.0

1.000

/

' Fast Compression |
>> 20 km s

(Galaxy merger),

. otherwise shear-out |
N Y,

=

Slow Compression
< 20 km s

(SF in multiple
supernovae events)

<0.01 Ze

-

0.2 20
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c.f., Hennebelle & Perault 1999,

Supersonic converging flow of WNM " 2 chneneie 2005 2006

Heitsch 2005, Vazquez-Semadeni 2006, 2007, etc.)
Density

0.1000 1.000 10.00 100.0 1000.

0.57 cm3, 1uG, 20 km s (with density inhomogeneity)
x,y,z =20 pc, 10 pc, 10 pc

Code Athena++ (stone+ 2020)

Thermal conduction | H+H collision
(Parker 1953)

Heating / Photo-electric heating /
Cooling Lya, OI, CII, CO

modified with metallicity
(Koyama & Inutsuka 2002
0 100.0 + Sutherland & Dopita 1993 modified)

%" 1.090
E Seed density Kolmogorov spectrum

0 . :
8—5 +Vi(pvi) =0, inhomogeneity (Kolmogorov 1941)
Apg = \/ (0p3)/po~ 1

10.

O0vi) | (Tys + pogue) = Vi@, . .
ot ) Spatial resolution 0.04 pc, 0.02 pc, 0.01pc
T%j — (P+ B_) 5ij _ % (1024 x 512 x 512 cells)
o 47r Self-gravity Multi-grid method
% +V; ((eéij + Tij)’Uj) ( Tomida & Stone 2023 )
= Vi(6(T)V;T) — pv;V;® — pL(T, Z) Metallicity Z,, 0.5Z.,0.2Z
0B; MW, LMC, SMC

8t + Vj ('UjBi — ’UZ-BJ') = 0,

A B-field angle 0, 15, 30 deg
Ve® = 4nGp.
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Metallicity dependence down to the SMC level «obayashi+ 2023

Density Density
0.1000 1.000 10.00 100.0 1000. 0.1000 1.000 10.00 100.0 1000.

@t/t cool(Z)=3

o v IBI
%x Density Q 1000 1000 1000
: 0.1000 1.000 10.00 1000 1000. 0.5 Zo @EMyr - '

(Turbulence is solenoidal
mode dominated.)

1.000 10.00 100.0
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Discussion: B-field angle against HI gas flow 15 deg

Zo @3Myr
‘ 4m———

0.2 Ze @15Myr

Small velocity shear
along B-fields overrides
the inefficient thermal instability growth
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Thermal instability in LHD experiments

with Masahiro Kobayashi, Ryohtaro Ishikawa, Kennichi Nagaoka, and many others

Astro: Lagrangian time-evolution LHD: Eulerian
from WNM to CNM when g <1 time-evolution (with Carbon) | .
%40 | Plasma density
S
= o With island
= — o | _
ICE) ‘?\E g 0 L . Withtout maj netic Esland
. - — —~ on [ Radiation power
N Preliminary X, Preliminary 5 20t
@ C: 3 10 i
< = 0 T
Q 1 2 3 4 5
8) time (s)
2 Jog (n [cm)) N [10'° m3]

o Thermal instability seems to grow predominantly “along” magnetic fields.
o Magnetic island stabilize the instability to achieve stable detached phase.
o Thermal instability growth scale << torus loop (i.e., instability grows locally).

We performed further LHD experiments in FY2025 cycle; for example,

o Varying impurity fraction similar to cosmic evolution of the interstellar plasma
o Heating comparable to Solar Corona
o Revealing hysteresis conditions

We will invite Dr. Patrick Antolin to discuss Solar thermal instability during the last week of Feb.
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26Al and the birth of Solar System

Arzoumanian, Arakawa, Kobayashi et al 2023

ﬁ Hub-filament system \ ﬁ Birth of the Solar system with}AI\
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26A| as the heating source in proto-Sun disk / planetesimals

v

Meteorites contain calcium—-aluminum-rich Inclusions (CAls),
which formed at the beginning of Solar system formation (4.6 Gyr ago).

PCA 91082, CR2

© INGEGRAL

P

13p + 13n

eBizzarro é%'al., 2017,..

CAls contain short-lived radionuclides (SLRs),

e.g., 26Al (used to be):

. Schoenbachler et al., 2025

I W%@lell().ivv{?o'im. N
_ :'I"“@Ho :
st
% BukCAl ¥ CTA VF4 [
o FG EB remelted C
O AOA ® FoB
A FTA 4cC AF

CV CAls |

26Al — 26Mg beta+ decay with 0.7 Myr timescale to heat disks / planetesimals

Initial fraction at the birth of the Solar system [26Al/27Al] = 5 x 10-°

There are theories proposing the source of 26Al and how it was delivered to the Solar System.
One of the promising mechanisms is supernovae, but this involves difficulties:
(1) too far away to provide enough amount (?6Al fully decayed before arriving)

or

(2) too close-by to provide enough amount (shock wave destruct the Solar System)
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Our alternative solution: Massive stars form in a hub

v’ Stars ubiquitously form v' Massive stars (> 20 Msun) form in
in filaments in molecular clouds. intersections of filaments (="hub”)
10" Nya(em™) 10%
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Kumar+ 2020

30.0 £1.00.0
RA (J2000)

10
Right Ascension (J2000)

— Proto-Sun formed in one of such filaments emanating from the hub?
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Injection of 26Al through filaments

v' The mass from SN ejecta to the proto-Sun filament?

ejecta—to—fil __ i Stil
Mtot - chcta —4 T d2
= 2.5x 102 T ]
> F i Parameter space for

= | | |
~ 25x103k | (1) the Solar System survives
“T F from the supernovae shock
S [ I

| A 1 AND

S 2.5x10%F g
t -

) wfil=0.1pc, Ifil=0.1pc (Sfil = 0.01 pc? ] 26 :
™~ 48 [ mmm=aa wm=o.1§§, Ifil=0.252 ESfiI=0.02 Eﬁzg ] (2) enoygh Al ,arrlves

Vo [ wfil=0.1pc, Ifil=0.3pc (Sfil = 0.03 pc?) 1 Me]ecta—to—fll 5> MSN—to—PPD
E 2-5 X 10_5 e tot tot

0 2 4 6 8 10

Distance from the exploding star [pc]

— Ongoing: Code development for 26Al transport
in MHD simulations of molecular cloud evolution.
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Summary

v'Backgrounds
+ Star formation efficiency problem
¢ Thermal instability
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v’ Colliding HI flow simulations

* At < 0.2 Z4, shear flows prevent thermal instability.
Clouds form only in large-scale fast flows.

* Once > 0.2 Zg, clouds form in slower compressions.

¢+ The solar system was also exposed to
a supernovae shock, which delivered 26Al.

v'Future prospects:

Fast Compression Il siow Compression
>> 20 km s < 20 km s

¢ Various environments
e.g., galaxy merger, SMC-LMC interaction (Galaxy merger), (SF in multiple

. . otherwise shear-out | WEHIIGTAETRAVET) )
¢ Impurity transport

i.e., flows with different metallicity <0.01 Ze 0.2 2726 >Z®




